Back to Search Start Over

B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells.

Authors :
Grumont RJ
Rourke IJ
O'Reilly LA
Strasser A
Miyake K
Sha W
Gerondakis S
Source :
The Journal of experimental medicine [J Exp Med] 1998 Mar 02; Vol. 187 (5), pp. 663-74.
Publication Year :
1998

Abstract

Rel and nuclear factor (NF)-kappaB1, two members of the Rel/NF-kappaB transcription factor family, are essential for mitogen-induced B cell proliferation. Using mice with inactivated Rel or NF-kappaB1 genes, we show that these transcription factors differentially regulate cell cycle progression and apoptosis in B lymphocytes. Consistent with an increased rate of mature B cell turnover in naive nfkb1-/- mice, the level of apoptosis in cultures of quiescent nfkb1-/-, but not c-rel-/-, B cells is higher. The failure of c-rel-/- or nfkb1-/- B cells to proliferate in response to particular mitogens coincides with a cell cycle block early in G1 and elevated cell death. Expression of a bcl-2 transgene prevents apoptosis in resting and activated c-rel-/- and nfkb1-/- B cells, but does not overcome the block in cell cycle progression, suggesting that the impaired proliferation is not simply a consequence of apoptosis and that Rel/NF-kappaB proteins regulate cell survival and cell cycle control through independent mechanisms. In contrast to certain B lymphoma cell lines in which mitogen-induced cell death can result from Rel/NF-kappaB-dependent downregulation of c-myc, expression of c-myc is normal in resting and stimulated c-rel-/- B cells, indicating that target gene(s) regulated by Rel that are important for preventing apoptosis may differ in normal and immortalized B cells. Collectively, these results are the first to demonstrate that in normal B cells, NF-kappaB1 regulates survival of cells in G0, whereas mitogenic activation induced by distinct stimuli requires different Rel/NF-kappaB factors to control cell cycle progression and prevent apoptosis.

Details

Language :
English
ISSN :
0022-1007
Volume :
187
Issue :
5
Database :
MEDLINE
Journal :
The Journal of experimental medicine
Publication Type :
Academic Journal
Accession number :
9480976
Full Text :
https://doi.org/10.1084/jem.187.5.663