Back to Search Start Over

Cooperative interception of neuronal apoptosis by BCL-2 and BAG-1 expression: prevention of caspase activation and reduced production of reactive oxygen species.

Authors :
Schulz JB
Bremen D
Reed JC
Lommatzsch J
Takayama S
Wüllner U
Löschmann PA
Klockgether T
Weller M
Source :
Journal of neurochemistry [J Neurochem] 1997 Nov; Vol. 69 (5), pp. 2075-86.
Publication Year :
1997

Abstract

Neuronally differentiated PC12 cells undergo synchronous apoptosis when deprived of nerve growth factor (NGF). Here we show that NGF withdrawal induces actinomycin D- and cycloheximide-sensitive caspase (ICE-like) activity. The peptide inhibitor of caspase activity, N-acetyl-Asp-Glu-Val-Asp-aldehyde, was more potent than acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone in preventing NGF withdrawal-induced apoptosis, suggesting an important role for caspase-3 (CPP32)-like proteases. We observed a peak of reactive oxygen species (ROS) 6 h after NGF withdrawal. ROS appear to be required for apoptosis, because cell death is prevented by the free radical spin trap, N-tert-butyl-alpha-phenylnitrone, and the antioxidant, N-acetylcysteine. ROS production was blocked by actinomycin D, cycloheximide, and caspase protease inhibitors, suggesting that ROS generation is downstream of new mRNA and protein synthesis and activation of caspases. Forced expression of either BCL-2 or the BCL-2-binding protein BAG-1 blocked NGF withdrawal-induced apoptosis, activation of caspases, and ROS generation, showing that they function upstream of caspases. Coexpression of BCL-2 and BAG-1 was more protective than expression of either protein alone.

Details

Language :
English
ISSN :
0022-3042
Volume :
69
Issue :
5
Database :
MEDLINE
Journal :
Journal of neurochemistry
Publication Type :
Academic Journal
Accession number :
9349553
Full Text :
https://doi.org/10.1046/j.1471-4159.1997.69052075.x