Back to Search
Start Over
Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats.
- Source :
-
The Journal of comparative neurology [J Comp Neurol] 1997 Sep 01; Vol. 385 (3), pp. 385-404. - Publication Year :
- 1997
-
Abstract
- We sought to describe quantitatively the morphological and functional changes that occur in the dentate gyrus of kainate-treated rats, an experimental model of temporal lobe epilepsy. Adult rats were treated systemically with kainic acid, and, months later, after displaying spontaneous recurrent motor seizures, their dentate gyri were examined. Histological, immunocytochemical, and quantitative stereological techniques were used to estimate numbers of neurons per dentate gyrus of various classes and to estimate the extent of granule cell axon reorganization along the septotemporal axis of the hippocampus in control rats and epileptic kainate-treated rats. Compared with control rats, epileptic kainate-treated rats had fewer Nissl-stained hilar neurons and fewer somatostatin-immunoreactive neurons. There was a correlation between the extent of hilar neuron loss and the extent of somatostatin-immunoreactive neuron loss. However, functional inhibition in the dentate gyrus, assessed with paired-pulse responses to perforant-pathway stimulation, revealed enhanced, and not the expected reduced, inhibition in epileptic kainate-treated rats. Numbers of parvalbumin- and cholecystokinin-immunoreactive neurons were similar in control rats and in most kainate-treated rats. A minority (36%) of the epileptic kainate-treated rats had fewer parvalbumin- and cholecystokinin-immunoreactive neurons than control rats, and those few (8%) with extreme loss in these interneuron classes showed markedly hyperexcitable dentate gyrus field-potential responses to orthodromic stimulation. Compared with control rats, epileptic kainate-treated rats had larger proportions of their granule cell and molecular layers infiltrated with Timm stain. There was a correlation between the extent of abnormal Timm staining and the extent of hilar neuron loss. Granule cell axon reorganization and dentate gyrus neuron loss were more severe in temporal vs. septal hippocampus. These findings from the dentate gyrus of epileptic kainate-treated rats are strikingly similar to those reported for human temporal lobe epilepsy, and they suggest that neuron loss and axon reorganization in the temporal hippocampus may be important in epileptogenesis.
- Subjects :
- Action Potentials
Animals
Axons ultrastructure
Behavior, Animal physiology
Cholecystokinin metabolism
Coloring Agents
Dentate Gyrus immunology
Epilepsy chemically induced
Excitatory Amino Acid Agonists
Immunohistochemistry
Kainic Acid
Male
Neurons pathology
Nissl Bodies ultrastructure
Parvalbumins immunology
Somatostatin metabolism
Staining and Labeling
Dentate Gyrus pathology
Dentate Gyrus physiopathology
Epilepsy pathology
Epilepsy physiopathology
Rats anatomy & histology
Rats physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9967
- Volume :
- 385
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- The Journal of comparative neurology
- Publication Type :
- Academic Journal
- Accession number :
- 9300766