Back to Search Start Over

Morphologic evidence for L-citrulline conversion to L-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves.

Authors :
Yu JG
O'Brien WE
Lee TJ
Source :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism [J Cereb Blood Flow Metab] 1997 Aug; Vol. 17 (8), pp. 884-93.
Publication Year :
1997

Abstract

Results from biochemical and pharmacologic studies suggest that Lcitrulline is taken up by cerebral perivascular nerves and is converted to Larginine for synthesizing nitric oxide (NO). The current study was designed using morphologic techniques to determine whether Lcitrulline is taken up into axoplasm of perivascular nerves and to explore the possibility that conversion of Lcitrulline to Larginine in these nerves is through the argininosuccinate pathway in porcine cerebral arteries. Results from light and electron microscopic autoradiographic studies indicated that dense silver grains representing L-[3H] citrulline uptake were found in cytoplasm of perivascular nerves, smooth muscle cells, and endothelial cells. The neuronal silver grains were significantly decreased in arteries pretreated with glutamine, which has been shown biochemically to block neuronal uptake of Lcitrulline. Results from light and electron microscopic immunohistochemical and histochemical studies indicate that dense nitric oxide synthase-immunoreactive (NOS-I), argininosuccinate synthetase-immunoreactive (ASS-I), and argininosuccinate lyase-immunoreactive (ASL-I) fibers were found in the adventitia of cerebral arteries. NOS-, ASS-, and ASL-immunoreactivities fibers were found in the axoplasm and in the endothelium. In whole-mount preparations, the NOS-I, ASS-I, and ASL-I fibers were completely coincident with NADPH diaphorase fibers, suggesting that axoplasmic ASS, ASL, and NOS were co-localized in the same neurons. These studies provide the first morphologic evidence indicating that Lcitrulline is taken up into cytoplasm of cerebral perivascular nerves and that the axoplasmic enzymes catalyzing the conversion of Lcitrulline to Larginine (for synthesizing NO) by argininosuccinate pathway always are co-localized in same neurons. These results support the hypothesis that Lcitrulline, the by-product of NO synthesis, is recycled to form Larginine for synthesizing NO in perivascular nerves to mediate cerebral neurogenic vasodilation. Results of the current morphologic studies also support the presence of Lcitrulline-Larginine cycle in cerebral vascular endothelium.

Details

Language :
English
ISSN :
0271-678X
Volume :
17
Issue :
8
Database :
MEDLINE
Journal :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Publication Type :
Academic Journal
Accession number :
9290586
Full Text :
https://doi.org/10.1097/00004647-199708000-00007