Back to Search
Start Over
Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.
- Source :
-
Plant physiology [Plant Physiol] 1997 Jul; Vol. 114 (3), pp. 999-1007. - Publication Year :
- 1997
-
Abstract
- The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.
- Subjects :
- Calcium-Transporting ATPases isolation & purification
Cell Fractionation
Cell Membrane enzymology
Cell Membrane ultrastructure
Centrifugation, Density Gradient
Egtazic Acid pharmacology
Vacuoles ultrastructure
Calcium-Transporting ATPases metabolism
Calmodulin pharmacology
Vacuoles enzymology
Vegetables enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 0032-0889
- Volume :
- 114
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Plant physiology
- Publication Type :
- Academic Journal
- Accession number :
- 9232880
- Full Text :
- https://doi.org/10.1104/pp.114.3.999