Back to Search
Start Over
Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
- Source :
-
Journal of molecular and cellular cardiology [J Mol Cell Cardiol] 1997 Mar; Vol. 29 (3), pp. 939-48. - Publication Year :
- 1997
-
Abstract
- It is not yet known if the alterations in myocardial glucose metabolism and the exaggerated left ventricular dysfunction that occur during reperfusion in hypertrophied hearts are reversible. Thus, we studied isolated working hearts from aortic-banded (n = 29) and sham-operated control (n = 32) male Sprague-Dawley rats with or without enalapril maleate treatment (25.6 +/- 0.8 mg/kg per day, p.o.) to determine the effect of regression of cardiac hypertrophy on myocardial glucose metabolism and post-ischemic heart function. Hearts were perfused with buffer containing 1.2 mM palmitate, 11 mM [5-3H]/[U-14C]-glucose, 0.5 mM lactate and 100 microU/ml insulin. Glucose metabolism [rates of glycolysis (3H2O production) and rates of oxidation (14CO2 production) of exogenous glucose] and heart function (heart rate x peak systolic pressure) were measured during 30 min pre-ischemic perfusion and 60 min of reperfusion following 20 min of global, no-flow ischemia. Hearts from untreated aortic-banded rats were hypertrophied, being 27.6 +/- 1.8% larger than hearts from untreated control rats. Enalapril treatment caused regression of cardiac hypertrophy that normalized heart weight in aortic-banded rats. Rates of glycolysis of exogenous glucose in hearts from untreated aortic-banded rats were accelerated compared to rates in hearts from untreated control rats during pre-ischemic perfusion (4391 +/- 97 v 2652 +/- 69 nmol glucose/min per g dry wt, respectively, P < 0.05) and reperfusion (2402 +/- 58 v 1597 +/- 88 nmol glucose/min per g dry wt. respectively, P < 0.05). In contrast, rates of glycolysis of exogenous glucose in hearts from enalapril-treated aortic-banded rats were normalized before and after ischemia. Rates of glycolysis of exogenous glucose in hearts of control rats were not affected by enalapril treatment. Oxidation of exogenous glucose was not different among groups either before or after ischemia. Function of hearts from untreated aortic-banded rats at the end of reperfusion was significantly less than that of hearts from untreated control rats (23.9 +/- 2.6 v 32.2 +/- 0.7 mmHg x beats per min/1000, respectively, P < 0.05). As with myocardial glucose metabolism function of hearts from aortic-banded rats treated with enalapril was normalized during reperfusion. Thus, pharmacologically induced regression of pressure-overload cardiac hypertrophy normalizes glucose metabolism as well as left ventricular function during reperfusion.
- Subjects :
- Angiotensin-Converting Enzyme Inhibitors pharmacology
Animals
Blood Pressure
Body Weight
Enalapril pharmacology
Glycolysis
Hypertrophy, Left Ventricular pathology
Male
Myocardial Ischemia
Myocardium pathology
Organ Size
Oxidation-Reduction
Peptidyl-Dipeptidase A blood
Rats
Rats, Sprague-Dawley
Glucose metabolism
Hypertrophy, Left Ventricular metabolism
Myocardial Reperfusion
Myocardium metabolism
Ventricular Function, Left
Subjects
Details
- Language :
- English
- ISSN :
- 0022-2828
- Volume :
- 29
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Journal of molecular and cellular cardiology
- Publication Type :
- Academic Journal
- Accession number :
- 9152855
- Full Text :
- https://doi.org/10.1006/jmcc.1996.0336