Back to Search
Start Over
Lipoxygenase is irreversibly inactivated by the hydroperoxides formed from the enynoic analogues of linoleic acid.
- Source :
-
Biochemistry [Biochemistry] 1997 Apr 15; Vol. 36 (15), pp. 4480-8. - Publication Year :
- 1997
-
Abstract
- Triple bond analogues of natural fatty acids irreversibly inactivate lipoxygenase during their enzymatic conversion [Nieuwenhuizen, W. F., et al. (1995) Biochemistry 34, 10538-10545]. To gain insight into the mechanism of the irreversible inactivation of soybean lipoxygenase-1, we studied the enzymatic conversion of two linoleic acid analogues, 9(Z)-octadec-9-en-12-ynoic acid (9-ODEYA) and 12(Z)-octadec-12-en-9-ynoic acid (12-ODEYA). During the inactivation process, Fe(III)-lipoxygenase converts 9-ODEYA into three products, i.e. 11-oxooctadec-9-en-12-ynoic acid, racemic 9-hydroxy-10(E)-octadec-10-en-12-ynoic acid, and racemic 9-hydroperoxy-10(E)-octadec-10-en-12-ynoic acid. Fe(II)-lipoxygenase does not convert the inhibitor and is not inactivated by 9-ODEYA. Fe(III)-lipoxygenase converts 12-ODEYA into 13-hydroperoxy-11(Z)-octadec-11-en-9-ynoic acid (34/66 R/S), 13-hydroperoxy11(E)-octadec-11-en-9-ynoic acid (36/64 R/S), 11-hydroperoxyoctadec-12-en-9-ynoic acid (11-HP-12-ODEYA, enantiomeric composition of 33/67), and 11-oxooctadec-12-en-9-ynoic acid (11-oxo-12-ODEYA) during the inactivation process. Also, Fe(II)-lipoxygenase is inactivated by 12-ODEYA. It converts the inhibitor into the same products as Fe(III)-lipoxygenase does, but two additional products are formed, viz. 13-oxo-11(E)-octadec-11-en-9-ynoic acid and 13-oxo-11(Z)-octadec-11-en-9-ynoic acid. The purified reaction products were tested for their lipoxygenase inhibitory activities. The oxo compounds, formed in the reaction of 9-ODEYA and 12-ODEYA, do not inhibit Fe(II)- or Fe(III)-lipoxygenase. The 9- and 13-hydroperoxide products that are formed from 9-ODEYA and 12-ODEYA, respectively, oxidize Fe(II)-lipoxygenase to its Fe(III) state and are weak lipoxygenase inhibitors. 11-HP-12-ODEYA is, however, the most powerful inhibitor and is able to oxidize Fe(II)-lipoxygenase to Fe(III)-lipoxygenase. 11-HP-12-ODEYA is converted into 11-oxo-12-ODEYA by Fe(III)-lipoxygenase. We propose a mechanism for the latter reaction in which Fe(III)-lipoxygenase abstracts the bisallylic hydrogen H-11 from 11-HP-12-ODEYA, yielding a hydroperoxyl radical which is subsequently cleaved into 11-oxo-ODEYA and a hydroxyl radical which may inactivate the enzyme.
- Subjects :
- Alkynes
Chromatography, High Pressure Liquid
Ferric Compounds chemistry
Ferrous Compounds chemistry
Gas Chromatography-Mass Spectrometry
Hydrogen Peroxide pharmacology
Isomerism
Linoleic Acid
Lipid Peroxidation
Lipoxygenase drug effects
Lipoxygenase Inhibitors pharmacology
Oleic Acids pharmacology
Quantum Theory
Glycine max enzymology
Spectrophotometry, Ultraviolet
Hydrogen Peroxide chemistry
Linoleic Acids chemistry
Lipoxygenase metabolism
Lipoxygenase Inhibitors chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 0006-2960
- Volume :
- 36
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 9109655
- Full Text :
- https://doi.org/10.1021/bi962956l