Back to Search Start Over

Decreased insulin action on muscle glucose transport after eccentric contractions in rats.

Authors :
Asp S
Richter EA
Source :
Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 1996 Nov; Vol. 81 (5), pp. 1924-8.
Publication Year :
1996

Abstract

We have recently shown that eccentric contractions (Ecc) of rat calf muscles cause muscle damage and decreased glycogen and glucose transporter GLUT-4 protein content in the white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl. Physiol. 79: 1338-1345, 1995). To study whether these changes affect insulin action, hindlimbs were perfused at three different insulin concentrations (0, 200, and 20,000 microU/ml) 2 days after one-legged eccentric contractions of the calf muscles. Compared with control, basal glucose transport was slightly higher (P < 0.05) in Ecc-WG and -RG, whereas it was lower (P < 0.05) at both submaximal and maximal insulin concentrations in the Ecc-WG and at maximal concentrations in the Ecc-RG. In the Ecc-S, the glucose transport was unchanged in hindquarters perfused in the absence or presence of a submaximal stimulating concentration of insulin, whereas it was slightly (P < 0.05) higher during maximal insulin stimulation compared with control S. At the end of perfusion the glycogen concentrations were lower in both Ecc-gastrocnemius muscles compared with control muscles at all insulin concentrations. Fractional velocity of glycogen synthase increased similarly with increasing insulin concentrations in Ecc- and control WG and RG. We conclude that insulin action on glucose transport but not glycogen synthase activity is impaired in perfused muscle exposed to prior eccentric contractions.

Details

Language :
English
ISSN :
8750-7587
Volume :
81
Issue :
5
Database :
MEDLINE
Journal :
Journal of applied physiology (Bethesda, Md. : 1985)
Publication Type :
Academic Journal
Accession number :
8941511
Full Text :
https://doi.org/10.1152/jappl.1996.81.5.1924