Back to Search Start Over

The assisted self-association of ATP4- by a poly(amino acid) [poly(Lys)] and its significance for cell organelles that contain high concentrations of nucleotides.

Authors :
Sigel H
Corfù NA
Source :
European journal of biochemistry [Eur J Biochem] 1996 Sep 15; Vol. 240 (3), pp. 508-17.
Publication Year :
1996

Abstract

The occurrence of high concentrations of ATP in certain cell organelles prompted us to study the self-association of ATP via the concentration dependence of the 1H-NMR chemical shifts for H2, H8 and H1' in D2O at pD 8.4 (25 degrees C) in the range 0.0025-0.4 M in the presence and absence of poly(alpha, L-lysine), where [Lys units] was 0.4 M. The experiment in the presence of poly(Lys) was repeated at pD 12.1. At pD 8.4, the poly(amino acid) is protonated, i.e. poly(H.Lys)n+, whereas at pD 12.1 only approximately 10% of the epsilon-amino groups are positively charged. The results in all three systems are consistent with the isodesmic model of indefinite non-cooperative stacking. The stacking tendency follows the series: ATP4- (K = 1.3 M-1; pD 8.4) < ATP4-/poly(H.Lys)n+ (K = 11.5 M-1; pD 8.4) > ATP4-/90% poly(Lys)/10% poly(H.Lys)n+ (K = 3.1 M-1; pD 12.1). It is evident that poly(H.Lys)n+ assists the association of ATP by a factor of approximately 10, and it is suggested that, via its positively charged epsilon-ammonium groups, poly(H.Lys)n+ acts as a matrix by aligning ATP4- ions via ionic interactions with the negatively charged phosphate residues. The intragranular concentrations of various constituents of several storage or secretory cell organelles, as reported in the literature, are tabulated. The chromaffin granules of the adrenal medulla and the dense granules of blood platelets contain particularly high concentrations of nucleotides ([ATP] is approximately 0.14 M in the chromaffin granules and 0.5 M in the dense granules of rabbit blood platelets) and amines, such as epinephrine or 5-hydroxytryptamine. These granules, and probably also the storage vesicles of certain neurons (which seem to have a similar composition), appear, if the total concentrations of the various solutes are considered, to be osmotically unstable, which means that the intragranular solutes must be associated. This aggregation is discussed, especially with regard to the nucleotides.

Details

Language :
English
ISSN :
0014-2956
Volume :
240
Issue :
3
Database :
MEDLINE
Journal :
European journal of biochemistry
Publication Type :
Academic Journal
Accession number :
8856048
Full Text :
https://doi.org/10.1111/j.1432-1033.1996.0508h.x