Back to Search Start Over

Effects of metrifonate, a cholinesterase inhibitor, on local cerebral glucose utilization in young and aged rats.

Authors :
Bassant MH
Jazat-Poindessous F
Lamour Y
Source :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism [J Cereb Blood Flow Metab] 1996 Sep; Vol. 16 (5), pp. 1014-25.
Publication Year :
1996

Abstract

The effects of the centrally acting anti-cholinesterase metrifonate (MFT) and its metabolite dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP) on local cerebral glucose utilization (LCGU) have been studied in 3- and 27-month-old rats, using the autoradiographic [14C]deoxyglucose technique. In 3-month-old rats, MFT (80 mg/kg i.p.) increased LCGU significantly in 17 of the 54 regions studied, including insular, cingulate, and temporal cortices, ventral hippocampus, thalamus, lateral habenula, substantia nigra, and superior colliculus. In these regions, the average MFT-induced increase in LCGU was 23% above control. The average hemispheric LCGU increased by 10% (p < 0.01). DDVP (5 mg/kg) increased LCGU in 19 regions (average increase 26%). The average hemispheric LCGU increased by 9% (p < 0.01). Regional distributions of MFT- and DDVP-induced increases in LCGU were similar and overlapped the distribution of the acetylcholinesterase activity. In 27-month-old rats, MFT was active in 18 regions (average increase 25%). The whole-brain mean LCGU increased by 10% (p < 0.01). MFT compensated for the age-related hypometabolism in some brain areas including insular, temporal, and retrosplenial cortices, substantia nigra, and superior colliculus. The effects of MFT on LCGU were preserved in old rats, at variance with other anticholinesterases (tacrine, physostigmine). Which are less active in the aged rat brain.

Details

Language :
English
ISSN :
0271-678X
Volume :
16
Issue :
5
Database :
MEDLINE
Journal :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Publication Type :
Academic Journal
Accession number :
8784247
Full Text :
https://doi.org/10.1097/00004647-199609000-00027