Back to Search Start Over

Attenuation of stimulated Ca2+ influx in colonic epithelial (HT29) cells by cAMP.

Authors :
Fischer KG
Leipziger J
Rubini-Illes P
Nitschke R
Greger R
Source :
Pflugers Archiv : European journal of physiology [Pflugers Arch] 1996 Aug; Vol. 432 (4), pp. 735-40.
Publication Year :
1996

Abstract

In HT29 colonic epithelial cells agonists such as carbachol (CCH) or ATP increase cytosolic Ca2+ activity ([Ca2+]i) in a biphasic manner. The first phase is caused by inositol 1,4,5-trisphophate-(Ins P3-) mediated Ca2+ release from their respective stores and the second plateau phase is mainly due to stimulated transmembraneous Ca2+ influx. The present study was undertaken to examine the effect of increased adenosine 3',5'-cyclic monophosphate (cAMP) (forskolin 10 micromol/l = FOR) on the Ca2+ transient in the presence of CCH (100 micromol/l). In unpaired experiments it was found that FOR induced a depolarization and reduced cytosolic Ca2+ ([Ca2+]i, measured as the fura-2 fluorescence ratio 340/380 nm) significantly. Dideoxyforskolin had no such effect. The effect of FOR was abolished when the cells were depolarized by a high-K+ solution. In further paired experiments utilizing video imaging in conjunction with whole-cell patch-clamp, [Ca2+]i was monitored separately for the patch-clamped cell and three to seven neighbouring cells. In the presence of CCH, FOR reduced [Ca2+]i uniformly from a fluorescence ratio (345/380) of 2.9 +/- 0.12 to 1.8 +/- 0.07 in the patch-clamped cell and its neighbours (n = 48) and depolarized the membrane voltage (Vm) of the patch-clamped cells significantly and reversibly from -54 +/- 7.4 to -27 +/- 5.9 mV (n = 6). In additional experiments Vm was depolarized by 15-54 mV by various increments in the bath K+ concentration. This led to corresponding reductions in [Ca2+]i. Irrespective of the cause of depolarization (high K+ or FOR) there was a significant correlation between the change in Vm and change in [Ca2+]i. These data indicate that the cAMP-mediated attenuation of Ca2+ influx is caused by the depolarization produced by this second messenger.

Details

Language :
English
ISSN :
0031-6768
Volume :
432
Issue :
4
Database :
MEDLINE
Journal :
Pflugers Archiv : European journal of physiology
Publication Type :
Academic Journal
Accession number :
8764976
Full Text :
https://doi.org/10.1007/s004240050192