Back to Search Start Over

The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase.

Authors :
Young K
Silver LL
Bramhill D
Cameron P
Eveland SS
Raetz CR
Hyland SA
Anderson MS
Source :
The Journal of biological chemistry [J Biol Chem] 1995 Dec 22; Vol. 270 (51), pp. 30384-91.
Publication Year :
1995

Abstract

The envA gene of Escherichia coli has been shown previously to be essential for cell viability (Beall, B. and Lutkenhaus, J. (1987) J. Bacteriol. 169, 5408-5415), yet it encodes a protein of unknown function. Extracts of strains harboring the mutant envA1 allele display 3.5-18-fold reductions in UDP-3-O-acyl-N-acetylglucosamine deacetylase specific activity. The deacetylase is the second enzymatic step of lipid A biosynthesis. The structural gene coding for the deacetylase has not been assigned. In order to determine if the envA gene encodes the deacetylase, envA was cloned into an isopropyl-1-thio-beta-D-galactopyranoside-inducible T7-based expression system. Upon induction, a protein of the size of envA was highly overproduced, as judged by SDS-PAGE. Direct deacetylase assays of cell lysates revealed a concomitant approximately 5,000-fold overproduction of activity. Assays of the purified, overproduced EnvA protein demonstrated a further approximately 5-fold increase in specific activity. N-terminal amino acid sequencing of the purified protein showed that the first 20 amino acids matched the predicted envA nucleotide sequence. Contaminating species were present at less than 1% of the level of the EnvA protein. Thus, envA is the structural gene for UDP-3-O-acyl-GlcNAc deacetylase. Based on its function in lipid A biosynthesis, we propose the new designation lpxC for this gene.

Details

Language :
English
ISSN :
0021-9258
Volume :
270
Issue :
51
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
8530464
Full Text :
https://doi.org/10.1074/jbc.270.51.30384