Back to Search Start Over

Respiratory load compensation. III. Role of spinal cord afferents.

Authors :
Frazier DT
Xu F
Lee LY
Taylor RF
Source :
Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 1993 Aug; Vol. 75 (2), pp. 682-7.
Publication Year :
1993

Abstract

In a previous study, we reported that inspiratory tracheal occlusion (TO) significantly inhibited the motor drive to the diaphragm in a decerebellated bilaterally vagotomized preparation (J. Appl. Physiol. 75:675-681, 1993). The hypothesis to be tested in the present study was that respiratory muscle afferents activated by inspiratory TO provided the inputs responsible for the observed inhibition. Adult cats were anesthetized, tracheotomized, and instrumented with diaphragm electromyographic (EMGdi) recording electrodes. The cerebellum, vagi, and dorsal spinal cord (C2-T2) were surgically exposed. Inspiratory TO was applied before and after cold blockade of the dorsal cord (C6) or dorsal root (C3-6) transection in the intact and decerebellated vagotomized cat. Respiratory timing (inspiratory and expiratory duration) was determined from the EMGdi record, and the peak integrated EMGdi (integral of EMGdi) response was used as an index of respiratory motor drive. Our results showed that 1) cold blockade at the dorsal C6 level in an intact preparation significantly increased the peak of the integral of EMGdi response to TO and was reversible upon rewarming; 2) as previously reported, decerebellation coupled with bilateral vagotomy significantly decreased the peak integral of EMGdi response to TO with no effect on timing; 3) cold blockade (-1 degree C) of the dorsal cord at C6 significantly attenuated this inhibition, and subsequent dorsal rhizotomy at C3-6 completely abolished this inhibition; and 4) decerebellation, cold blockade of the dorsal cord (C6), and dorsal rhizotomy (C3-6) did not significantly affect baseline values in bilaterally vagotomized cats.(ABSTRACT TRUNCATED AT 250 WORDS)

Details

Language :
English
ISSN :
8750-7587
Volume :
75
Issue :
2
Database :
MEDLINE
Journal :
Journal of applied physiology (Bethesda, Md. : 1985)
Publication Type :
Academic Journal
Accession number :
8226469
Full Text :
https://doi.org/10.1152/jappl.1993.75.2.682