Back to Search Start Over

Second-site mutation of Ala-220 to Glu or Asp suppresses the mutation of Asp-285 to Asn in the transposon Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli.

Authors :
Yamaguchi A
O'yauchi R
Someya Y
Akasaka T
Sawai T
Source :
The Journal of biological chemistry [J Biol Chem] 1993 Dec 25; Vol. 268 (36), pp. 26990-5.
Publication Year :
1993

Abstract

A carboxyl group of Asp-285 is essential for tetracycline/H+ antiport mediated by the transposon Tn10-encoded metal-tetracycline/H+ antiporter (TetA) of Escherichia coli (Yamaguchi, A., Akasaka, T., Ono, N., Someya, Y., Nakatani, M., and Sawai, T. (1992) J. Biol. Chem. 267, 7490-7498). Spontaneous tetracycline resistance revertants were isolated from E. coli cells carrying the Asn-285 mutant tetA gene. All of the revertants were due to the second-site mutation at codon 220 of GCG (Ala) to GAG (Glu). The Km value of the tetracycline transport mediated by the revertant TetA protein was about 4-fold higher than that of the wild-type, indicating that the revertant is a low affinity mutant. A Glu-220 and Asn-285 double mutant constructed by site-directed mutagenesis showed the same properties as the revertants, confirming that the mutation of Ala-220 is solely responsible for the suppression. The Asp-220 mutation of the Asn-285 mutant resulted in a lower level of restoration of the tetracycline resistance and the transport activity than in the case of the Glu-220 mutation. A single mutation replacing Ala-220 with Glu or Asp caused about a 2-4-fold decrease in the tetracycline resistance, but no crucial change in the transport activity. It is not likely that Glu-220 is required for a charge-neutralizing salt bridge because an unpaired negative charge in a Glu-220 or Asp-220 single mutant did not cause a serious change in the activity. An alternative explanation is reasonable; Asp-285 directly contributes to the binding of a cationic substrate, metal-tetracycline chelation complex, or proton, and an acidic residue at position 220 can take over the role of Asp-285.

Details

Language :
English
ISSN :
0021-9258
Volume :
268
Issue :
36
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
7903301