Back to Search
Start Over
Potential drug targets for Mycobacterium avium defined by radiometric drug-inhibitor combination techniques.
- Source :
-
Antimicrobial agents and chemotherapy [Antimicrob Agents Chemother] 1994 Oct; Vol. 38 (10), pp. 2287-95. - Publication Year :
- 1994
-
Abstract
- Previously established radiometric techniques were used to assess the effectiveness of combined antimicrobial drug-inhibitory drug (drug-inhibitor) treatment on two clinical isolates of the Mycobacterium avium complex representing three colony variants: smooth opaque (dome) (SmO), smooth transparent (SmT), and rough (Rg). All variants were identified as members of the M. avium complex; however, only the SmT colony type of strain 373 possessed characteristic serovar-specific glycopeptidolipid (GPL) antigens. MICs, determined radiometrically, of drugs with the potential to inhibit the biosynthesis of GPL antigens or other cell envelope constituents were similar for all strains. These drugs included cerulenin, N-carbamyl-DL-phenylalanine, N-carbamyl-L-isoleucine, trans-cinnamic acid, ethambutol, 1-fluoro-1-deoxy-beta-D-glucose, 2-deoxy-D-glucose, and m-fluoro-phenylalanine. The MICs of the antimicrobial drugs amikacin, sparfloxacin, and clarithromycin varied, but overall the MICs for the SmO variant were the lowest. Radiometric assessment of drug-inhibitor combinations by using established x/y determinations revealed enhanced activity when either ethambutol or cerulenin were used in combination with all antimicrobial agents for all variants except the Rg variant of strain 424, for which ethambutol was not effective. Enhanced activity with amino acid analogs was observed with the Rg colony variants of strains 373 and 424. Two potential sites for drug targeting were identified: fatty acid synthesis, for all strains assayed, and peptide biosynthesis, particularly for Rg colony variants that possess previously identified phenylalanine-containing lipopeptides as potential targets for future drug development.
Details
- Language :
- English
- ISSN :
- 0066-4804
- Volume :
- 38
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Antimicrobial agents and chemotherapy
- Publication Type :
- Academic Journal
- Accession number :
- 7840559
- Full Text :
- https://doi.org/10.1128/AAC.38.10.2287