Back to Search Start Over

A mutualistic fungal symbiont of perennial ryegrass contains two different pyr4 genes, both expressing orotidine-5'-monophosphate decarboxylase.

Authors :
Collett MA
Bradshaw RE
Scott DB
Source :
Gene [Gene] 1995 May 26; Vol. 158 (1), pp. 31-9.
Publication Year :
1995

Abstract

A fragment of the Claviceps purpurea pyr4 gene, encoding orotidine-5'-monophosphate decarboxylase (OMP decarboxylase), was used to screen a genomic library from an isolate of a fungus, Acremonium sp. (designated Lp1), which grows as an endophyte in perennial ryegrass (Lolium perenne). Three positive clones, lambda MC11, lambda MC12 and lambda MC14, were isolated. Two of these clones, lambda MC12 and lambda MC14, were overlapping clones from the same locus, while lambda MC11 was from a different locus. Fragments of these clones which hybridised with C. purpurea pyr4 were sequenced and found to have similarity with pyr4 from other Pyrenomycete fungi. The pyr4 gene from lambda MC12 and lambda MC14 was designated pyr4-1 and that from lambda MC11 was designated pyr4-2. The predicted ORFs of the two genes were highly conserved, with 97.5% identity at the nucleotide level, the 5' non-coding sequences were the least conserved with 88.5% identity and the 3' non-coding sequences had 93.0% identity. RT-PCR analysis of total RNA from Lp1 demonstrated that transcripts from the two genes were present at similar levels, and hybridisation of pyr4-1 to Northern blots of total RNA from Lp1 showed that full-length transcripts were being produced. Genomic fragments containing pyr4 were transformed into a strain of Aspergillus nidulans which has a mutation in pyrG (encoding OMP decarboxylase). Both pyr4-1 and pyr4-2 complemented the pyrG mutation in A. nidulans, indicating that both encode functional OMP decarboxylases. It has been proposed [Schardl et al., Genetics 136 (1994) 1307-1317] that the two pyr4 in Lp1 arose by interspecific hybridisation, most likely between the ryegrass choke pathogen, Epichloë typhina, and another endophyte from perennial ryegrass, Acremonium lolii. Analysis by PCR amplification and direct sequencing of the variable 5' non-coding regions of pyr4, from possible ancestors to Lp1 supports this hypothesis. Comparisons of these sequences to the 5' non-coding sequences from pyr4-1 and pyr4-2 demonstrated that E. typhina and A. lolii were the most likely ancestors of the two pyr4 found in Lp1.

Details

Language :
English
ISSN :
0378-1119
Volume :
158
Issue :
1
Database :
MEDLINE
Journal :
Gene
Publication Type :
Academic Journal
Accession number :
7789808
Full Text :
https://doi.org/10.1016/0378-1119(95)00143-t