Back to Search Start Over

Thiamin and derivatives as modulators of rat brain chloride channels.

Authors :
Bettendorff L
Hennuy B
Wins P
Schoffeniels E
Source :
Neuroscience [Neuroscience] 1993 Feb; Vol. 52 (4), pp. 1009-17.
Publication Year :
1993

Abstract

Several membrane fractions were prepared from rat brain by differential and sucrose density gradient centrifugation. Most fractions took up 36Cl- rapidly at a rate linear with time during the first 30-60 s, then the rate progressively slowed down. The lowest rate of uptake was found in the mitochondrial fraction. Oxythiamin partially inhibited 36Cl- uptake in all fractions. In P2 (crude synaptosomal fraction), oxythiamin decreased the initial rate of uptake by 32%, the apparent Ki being 1.5 mM. Thiamin and amprolium were less effective as inhibitors. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (0.1-1 mM) inhibited 36Cl- uptake by 40-50%. In the presence of this compound at a concentration > or = 5 x 10(-4) M, oxythiamin became ineffective. 36Cl- uptake was increased by GABA (0.1 mM) and this effect was antagonized by picrotoxin as expected, but not by oxythiamin. The rate of 36Cl- uptake did not appreciably depend on the external chloride concentration and was unaffected by bumetanide or by replacement of external Na+ by choline. Taken together, these data suggest that the oxythiamin-sensitive 36Cl- influx is essentially diffusional and is not related to the GABA receptor or the Na:K:2Cl co-transport. Partial replacement of external Na+ by K+ or treatment with 0.1 mM veratridine (which should both result in membrane depolarization) increased 36Cl- uptake by 50 and 30% respectively; the inhibitory effect of oxythiamin was enhanced to the same proportion.(ABSTRACT TRUNCATED AT 250 WORDS)

Details

Language :
English
ISSN :
0306-4522
Volume :
52
Issue :
4
Database :
MEDLINE
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
7680796
Full Text :
https://doi.org/10.1016/0306-4522(93)90547-s