Back to Search Start Over

Immunity to transplantable nitrosourea-induced neurogenic tumors. III. Systemic adoptive transfer of immunity.

Authors :
Shibuya N
Hochgeschwender U
Kida Y
Hochwald GM
Thorbecke GJ
Cravioto H
Source :
Journal of neuropathology and experimental neurology [J Neuropathol Exp Neurol] 1984 Jul; Vol. 43 (4), pp. 426-38.
Publication Year :
1984

Abstract

The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10(5) gliosarcoma T9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10(5) T9 cells inhibited the growth of T9 cells mixed with spleen cells in a ratio of 1:25 and injected ID, but could not act after intravenous transfer. However, donor rats which had rejected increasing T9 challenge doses up to 1 X 10(7) cells produced immune spleen cells which, upon IV transfer, could inhibit growth of ID T9 challenge but not of EB-679, an unrelated glioma, in recipient rats. Rejection of IC T9 challenge was also obtained after IV transfer, in recipients of such "hyperimmune" spleen cells, but was less (60% maximum) than that noted after ID T9 challenge (100% maximum). The removal of B cells from the transferred spleen cells did not affect the results, suggesting that the specific immunity was mediated by T cells. We conclude that the special immunological circumstances of tumors growing in the brain renders them less accessible to rejection by systemically transferred immune cells, but it is nevertheless possible to effect a significant incidence of rejection of syngeneic tumor growth in the brain by the intravenous transfer of hyperimmune spleen cells.

Details

Language :
English
ISSN :
0022-3069
Volume :
43
Issue :
4
Database :
MEDLINE
Journal :
Journal of neuropathology and experimental neurology
Publication Type :
Academic Journal
Accession number :
6610726
Full Text :
https://doi.org/10.1097/00005072-198407000-00007