Back to Search
Start Over
The consistency principle in protein structure and pathways of folding.
- Source :
-
Advances in biophysics [Adv Biophys] 1984; Vol. 18, pp. 149-64. - Publication Year :
- 1984
-
Abstract
- It is pointed out that various energy terms contributing to stabilize the native state of globular proteins are consistent in the first approximation with each other in the native state. This means that each energy term is individually minimized at the minimum point of the total energy. I proposed (1) to call this fact "the consistency principle in protein structure." The fair success of various methods of prediction of the secondary structures in globular proteins from their amino acid sequence is often interpreted as indicating the dominance of the short-range interactions in determining the local structures of the polypeptide chains. Partly from such a point of view, the hierarchic condensation model has been popular for the process of protein folding. However the consistency principle indicates that the short-range interactions are just one type of intramolecular interaction which contributes to stabilization of the native structure together with other mutually consistent types of intramolecular interactions. Therefore the hierarchic condensation model is not necessarily a unique model of protein folding. Roles of a possible nonspecific globular state, stabilized by nonspecific long-range intramolecular interactions, in the folding process are discussed. It is expected that this nonspecific globular state is observed either as an equilibrium or a kinetic intermediate state between the unfolded and the folded native states. Observation as a kinetic intermediate state is expected to occur in experiments done under strongly refolding conditions. In this case the polypeptide chain in the unfolded state collapses into a nonspecific globule by the action of nonspecific long-range intramolecular interactions. Two possible mechanisms of the transition from the nonspecific globular state to the specific native folded state are discussed. In an experiment done under weakly refolding conditions, folding is expected to occur according to the embryo-nucleus model. This model is a refined version of the hierarchic condensation model. Refinement is done by taking into account the fact that the intermediate structures assumed in the hierarchic condensation model are unstable against both the native folded state and the unfolded state. A nucleus is an ordered structure of a certain size. Ordered structures of a size larger than a nucleus tend to fold further to become the native specific globule. Ordered structures of a size smaller than a nucleus tend to unfold. Embryos are intrinsically unstable ordered structures smaller than a nucleus. Folding occurs when embryos grow in size to become a nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)
Details
- Language :
- English
- ISSN :
- 0065-227X
- Volume :
- 18
- Database :
- MEDLINE
- Journal :
- Advances in biophysics
- Publication Type :
- Academic Journal
- Accession number :
- 6544036
- Full Text :
- https://doi.org/10.1016/0065-227x(84)90010-8