Back to Search Start Over

Modulation of functional and optimal (Na+-K+)ATPase activity during the cell cycle of neuroblastoma cells.

Authors :
Mummery CL
Boonstra J
Van Der Saag PT
de Laat SW
Source :
Journal of cellular physiology [J Cell Physiol] 1981 Apr; Vol. 107 (1), pp. 1-9.
Publication Year :
1981

Abstract

Functional and optimal activities of the (Na+-K+)ATPase, as determined by ouabain-sensitive K+ influx in intact cells and ATP hydrolysis in cell homogenates respectively, have been measured during the cell cycle of neuroblastoma (clone Neuro-2A) cells. The cells were synchronized by selective detachment of mitotic cells. The ouabain-sensitive K+ influx decreased more than fourfold from 1.62 +/- 0.11 nmoles/min/10(6) cells to 0.36 +/- 0.25 nmoles/min/10(6) cells on passing from mitosis to early G1 phase. On entry into S phase a transient sixfold increase to 2.07 +/- 0.30 nmoles/min/10(6) cells was observed, followed by a rapid decline, after which the active K+ influx rose again steadily from 1.03 +/- 0.25 nmoles/min/10(6) cells in early S phase to 2.10 +/- 0.92 nmoles/min/10(6) cells just prior to the next mitosis. The ouabain-insensitive component rose linearly through the cycle in the same manner as the protein content/cell. Combining total K+ influx values with efflux data obtained previously showed that net loss of K+ occurred with transition from mitosis to G1 phase while net accumulation occurred with entry into S. Throughout mid-S phase net K+ flux was virtually zero, but a large net influx occurred again just before the next mitosis. The (Na+-K+)ATPase activity measured in cell homogenates decreased rapidly from mitosis to G1 phase and increased steadily throughout S phase, but the transient activation on entry into S phase was not observed. Complete inhibition of the (Na+-K+)ATPase mediated K+ influx by ouabain (5 mM) prevents the cells from entering S phase, while partial inhibition by lower concentrations of ouabain (0.2 and 0.5 mM; km = 0.17 mM) causes partial blockage in G1 and, to a lesser extent, a reduced rate of progression through the rest of the cell cycle. We conclude that the transient increase in (Na+-K+)ATPase mediated K+ influx at the G1/S transition is a prerequisite for entry into S phase, while maintenance of adequate levels of K+ influx is necessary for normal rate of progression through the rest of the cell cycle.

Details

Language :
English
ISSN :
0021-9541
Volume :
107
Issue :
1
Database :
MEDLINE
Journal :
Journal of cellular physiology
Publication Type :
Academic Journal
Accession number :
6260824
Full Text :
https://doi.org/10.1002/jcp.1041070102