Back to Search Start Over

Proteolytic activity of alpha 2-macroglobulin-enzyme complexes toward human factor VIII/von Willebrand factor.

Authors :
Switzer ME
Gordon HJ
McKee PA
Source :
Biochemistry [Biochemistry] 1983 Mar 15; Vol. 22 (6), pp. 1437-44.
Publication Year :
1983

Abstract

The low level of enzymatic activity of certain alpha 2-macroglobulin-proteinase complexes could be important to the function of factor VIII/von Willebrand glycoprotein since it is especially sensitive to proteolytic cleavage. To test this possibility, complexes of alpha 2-macroglobulin with plasmin, trypsin, and thrombin were formed in at least a 2:1 molar ratio of alpha 2-macroglobulin:proteinase and tested for effects on the factor VIII procoagulant activity of the factor VIII/von Willebrand glycoprotein. Neither the alpha 2-macroglobulin-trypsin complex nor the alpha 2-macroglobulin-plasmin complex affected factor VIII procoagulant activity. The behavior of the alpha 2-macroglobulin-thrombin complex was different. When alpha 2-macroglobulin and thrombin were incubated in a mole ratio of 3:1 or less, factor VIII procoagulant activity was enhanced to about the same extent as with free thrombin. Even at a 24:1 mole ratio, the mixture could produce 45% of the increase in factor VIII activity obtained with free thrombin. The isolated alpha 2-macroglobulin-thrombin complex could also activate the factor VIII procoagulant function to about 45% of the level obtained with an identical amount of uncomplexed thrombin. Analysis of the alpha 2-macroglobulin-125I-labeled thrombin complexes by rechromatography or by polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated that this activation was not due to free thrombin. We conclude that the alpha 2-macroglobulin-thrombin complex retains sufficient proteolytic activity to activate the procoagulant function of factor VIII/von Willebrand glycoprotein despite the latter being a very large substrate, having an estimated molecular weight of 1-20 million.

Details

Language :
English
ISSN :
0006-2960
Volume :
22
Issue :
6
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
6188490
Full Text :
https://doi.org/10.1021/bi00275a018