Back to Search
Start Over
Properties and developmental roles of the lysyl- and tryptophanyl-transfer ribonucleic acid synthetases of Bacillus subtilis: common genetic origin of the corresponding spore and vegetative enzymes.
- Source :
-
Journal of bacteriology [J Bacteriol] 1974 Apr; Vol. 118 (1), pp. 70-82. - Publication Year :
- 1974
-
Abstract
- The lysyl-transfer ribonucleic acid synthetase (LRS) and tryptophanyl-transfer ribonucleic acid synthetases (TRS) (l-lysine:tRNA ligase [AMP], EC 6.1.1.6; and l-tryptophan:tRNA ligase [AMP], EC 6.1.1.2) have been purified 60- and 100-fold, respectively, from vegetative cells and spores of Bacillus subtilis. There are no significant differences between the corresponding spore and vegetative enzymes with respect to their elution characteristics from columns of phosphocellulose or hydroxylapatite, their molecular weight (~130,000 for LRS and ~87,000 for TRS as determined by gel filtration), their kinetic constants for substrates (in the amino acid-dependent adenosine triphosphate-pyrophosphate exchange reaction), and the kinetics of inactivation by heat and by antibody. The Mg(2+) requirement for optimal enzyme activity of the corresponding spore and vegetative enzyme differ slightly. Mutants having defective (temperature sensitive) vegetative LRS or TRS activities produce spores in which these enzymes are also defective. The mutant spores are more heat sensitive than the parental type, but contain normal levels of dipicolinic acid. They germinate normally at the restrictive temperature (43 C), but are blocked at specific developmental stages in outgrowth. No modification in temperature sensitivity phenotype occurs during outgrowth, nor is there a change in molecular weight of the two enzymes. The implication is that the LRS and TRS activities of the vegetative and spore stages are each coded (at least in part) by the same structural gene. The temperature sensitivity of mutant spores is discussed with respect to those factors which are involved in the formation of the heat-resistant state.
- Subjects :
- Amino Acyl-tRNA Synthetases isolation & purification
Animals
Bacillus subtilis analysis
Bacillus subtilis growth & development
Carbon Radioisotopes
Cell-Free System
Chromatography
Chromatography, Gel
Genes
Hot Temperature
Immune Sera
Lysine
Magnesium pharmacology
Molecular Weight
Mutation
Phosphorus Radioisotopes
Picolinic Acids analysis
Rabbits immunology
Spores, Bacterial analysis
Spores, Bacterial enzymology
Spores, Bacterial growth & development
Tryptophan
Amino Acyl-tRNA Synthetases metabolism
Bacillus subtilis enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9193
- Volume :
- 118
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of bacteriology
- Publication Type :
- Academic Journal
- Accession number :
- 4206876
- Full Text :
- https://doi.org/10.1128/jb.118.1.70-82.1974