Back to Search Start Over

Base pairing involving deoxyinosine: implications for probe design.

Authors :
Martin FH
Castro MM
Aboul-ela F
Tinoco I Jr
Source :
Nucleic acids research [Nucleic Acids Res] 1985 Dec 20; Vol. 13 (24), pp. 8927-38.
Publication Year :
1985

Abstract

The thermal stability of oligodeoxyribonucleotide duplexes containing deoxyinosine (I) residues matched with each of the four normal DNA bases were determined by optical melting techniques. The duplexes containing at least one I were obtained by mixing equimolar amounts of an oligonucleotide of sequence dCA3XA3G with one of sequence dCT3YT3G where X and Y were A, C, G, T, or I. Comparison of optical melting curves yielded relative stabilities for the I-containing standard base pairs in an otherwise identical base-pair sequence. I:C pairs were found to be less stable than A:T pairs in these duplexes. Large neighboring-base effects upon stability were observed. For example, when (X,Y) = (I,A), the duplex is eight-fold more stable than when (X,Y) = (A,I). Independent of sequence effects the order of stabilities is: I:C greater than I:A greater than I:T congruent to I:G. This order differs from that of deoxyguanosine which pairs less strongly with dA; otherwise each deoxyinosine base pair is less stable than its deoxyguanosine counterpart in the same sequence environment. Implications of these results for design of DNA oligonucleotide probes are discussed.

Details

Language :
English
ISSN :
0305-1048
Volume :
13
Issue :
24
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
4080553
Full Text :
https://doi.org/10.1093/nar/13.24.8927