Back to Search Start Over

Contributions of dangling end stacking and terminal base-pair formation to the stabilities of XGGCCp, XCCGGp, XGGCCYp, and XCCGGYp helixes.

Authors :
Freier SM
Alkema D
Sinclair A
Neilson T
Turner DH
Source :
Biochemistry [Biochemistry] 1985 Aug 13; Vol. 24 (17), pp. 4533-9.
Publication Year :
1985

Abstract

The role of stacking in terminal base-pair formation was studied by comparison of the stability increments for dangling ends to those for fully formed base pairs. Thermodynamic parameters were measured spectrophotometrically for helix formation of the hexanucleotides AGGCCUp, UGGCCAp, CGGCCGp, GCCGGCp, and UCCGGAp and for the corresponding pentanucleotides containing a 5'-dangling end on the GGCCp or CCGGp core helix. In 1 M NaCl at 1 X 10(-4) M strands, a 5'-dangling nucleotide in this series increases the duplex melting temperature (Tm) only 0-4 degrees C, about the same as adding a 5'-phosphate. In contrast, a 3'-dangling nucleotide increases the Tm at 1 X 10(-4) M strands 7-23 degrees C, depending on the sequence [Freier, S. M., Burger, B. J., Alkema, D., Neilson, T., & Turner, D. H. (1983) Biochemistry 22, 6198-6206]. These results are consistent with stacking patterns observed in A-form RNA. The stability increments from terminal A.U, C.G, or U.A base pairs on GGCC or a terminal U.A pair on CCGG are nearly equal to the sums of the stability increments from the corresponding dangling ends. This suggests stacking plays a large role in nucleic acid stability. The stability increment from the terminal base pairs in GCCGGCp, however, is about 5 times the sum of the corresponding dangling ends, suggesting hydrogen bonding can also make important contributions.

Details

Language :
English
ISSN :
0006-2960
Volume :
24
Issue :
17
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
4063336
Full Text :
https://doi.org/10.1021/bi00338a008