Back to Search Start Over

In vivo measurement of lead in bone using x-ray fluorescence.

Authors :
Somervaille LJ
Chettle DR
Scott MC
Source :
Physics in medicine and biology [Phys Med Biol] 1985 Sep; Vol. 30 (9), pp. 929-43.
Publication Year :
1985

Abstract

The factors affecting the accuracy and minimum detectable concentration of in vivo tibia lead measurement are discussed, and it is demonstrated that the use of a 109Cd source in a backscatter geometry and using the 88 keV coherently scattered photon for normalisation optimizes both criteria. The measurement is shown to be independent of variations in source-sample distance, thickness of overlying tissue and tibia size and shape. Applying the same technique in vitro to samples of human tibia and metatarsals, it is shown that the results are not significantly different (p approximately equal to 0.9) from atomic absorption spectrometry results from another laboratory. The results of Monte Carlo dose distribution calculations are presented and compared with measurements using thermoluminescent dosemeters: the mean absorbed dose to a 20 cm leg section is less than 0.1 mGy (10 mrad) and the maximum absorbed skin dose is 0.45 mGy (45 mrad). For this dose the minimum detectable lead concentration is 10 micrograms g-1. Finally, the technique has been applied to groups of normals and occupationally exposed workers, and the means have been shown to be significantly different, namely 10 and 31 micrograms g-1 respectively. In the normal subjects tibia lead correlated strongly with age (r = 0.63, p less than 0.001).

Details

Language :
English
ISSN :
0031-9155
Volume :
30
Issue :
9
Database :
MEDLINE
Journal :
Physics in medicine and biology
Publication Type :
Academic Journal
Accession number :
4048276
Full Text :
https://doi.org/10.1088/0031-9155/30/9/005