Back to Search Start Over

Synthesis of Biomass-Based Linear Aliphatic Polyesters Based on Sebacic Acid and 1,18-Octadecanedioic Acid and Their Thermal Properties and Odd-Even Effect.

Authors :
Loh JWJ
Chua NH
Goto A
Source :
Macromolecular rapid communications [Macromol Rapid Commun] 2025 Jan 16, pp. e2400941. Date of Electronic Publication: 2025 Jan 16.
Publication Year :
2025
Publisher :
Ahead of Print

Abstract

A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M <subscript>n</subscript> ) is 10 000-43 000 g mol <superscript>-1</superscript> after purification. A possible limitation of currently available biomass-derived polyesters is their relatively low melting temperatures (T <subscript>m</subscript> ). The polyesters synthesized using OA with a long alkyl chain (C18 chain) in the present work exhibit relatively high T <subscript>m</subscript> values of 78-93 °C, which are rather close to that (105-118 °C) of low-density polyethylene (LDPE), and may serve as biomass-based alternatives to LDPE with respect to thermal properties. Scientifically notably, an odd-even effect is observed in the T <subscript>m</subscript> values. Polyesters with an even total-number of carbon atoms in the repeating unit have higher T <subscript>m</subscript> values than their odd total-number counterparts likely due to their different orientations of dipoles of the polar ester groups along the backbone chain.<br /> (© 2025 Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
1521-3927
Database :
MEDLINE
Journal :
Macromolecular rapid communications
Publication Type :
Academic Journal
Accession number :
39822102
Full Text :
https://doi.org/10.1002/marc.202400941