Back to Search Start Over

Unravelling viral ecology and evolution over 20 years in a freshwater lake.

Authors :
Zhou Z
Tran PQ
Martin C
Rohwer RR
Baker BJ
McMahon KD
Anantharaman K
Source :
Nature microbiology [Nat Microbiol] 2025 Jan 03. Date of Electronic Publication: 2025 Jan 03.
Publication Year :
2025
Publisher :
Ahead of Print

Abstract

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors. Double-stranded DNA phages from the class Caudoviricetes dominated the community. We identified 574 auxiliary metabolic gene families representing over 140,000 auxiliary metabolic genes, including important genes such as psbA (photosynthesis), pmoC (methane oxidation) and katG (hydrogen peroxide decomposition), which were consistently present and active across decades and seasons. Positive associations and niche differentiation between virus-host pairs, including keystone Cyanobacteria, methanotrophs and Nanopelagicales, emerged during seasonal changes. Inorganic carbon and ammonium influenced viral abundances, underscoring viral roles in both 'top-down' and 'bottom-up' interactions. Evolutionary processes favoured fitness genes, reduced genomic heterogeneity and dominant sub-populations. This study transforms understanding of viral ecology and evolution in Earth's microbiomes.<br />Competing Interests: Competing interests: The authors declare no competing interests.<br /> (© 2025. The Author(s), under exclusive licence to Springer Nature Limited.)

Details

Language :
English
ISSN :
2058-5276
Database :
MEDLINE
Journal :
Nature microbiology
Publication Type :
Academic Journal
Accession number :
39753667
Full Text :
https://doi.org/10.1038/s41564-024-01876-7