Back to Search
Start Over
Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.
- Source :
-
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2025 Mar 15; Vol. 329, pp. 125648. Date of Electronic Publication: 2024 Dec 20. - Publication Year :
- 2025
-
Abstract
- Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed. A combined molecular mechanics/quantum mechanics approach was taken to reveal how relative Raman scattering intensities depend on the distance from the solute and the excitation wavelength. The computations indicate a big effect of solute charge; for example, the sodium cation affects Raman scattering by water to a lesser extent than the chlorine anion. The modeling was able to qualitatively reproduce the experimental observation that a solution of a simple salt may work as a baseline better than pure water in many Raman experiments. For absorbing species, an additional scattering boost occurs due to the resonance effect. Simulations thus provide useful insight into solute-solvent interactions and their effects on measured spectra.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3557
- Volume :
- 329
- Database :
- MEDLINE
- Journal :
- Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
- Publication Type :
- Academic Journal
- Accession number :
- 39736189
- Full Text :
- https://doi.org/10.1016/j.saa.2024.125648