Back to Search
Start Over
Receptor kinase LecRK-I.9 regulates cell wall remodelling during lateral root formation in Arabidopsis.
- Source :
-
Journal of experimental botany [J Exp Bot] 2024 Dec 26. Date of Electronic Publication: 2024 Dec 26. - Publication Year :
- 2024
- Publisher :
- Ahead of Print
-
Abstract
- Assembling and remodelling the cell wall is essential for plant development. Cell wall dynamics is controlled by cell wall proteins, polysaccharide biosynthesis, and a variety of sensor and receptor systems. LecRK-I.9, an Arabidopsis thaliana plasma membrane-localised lectin receptor kinase, was previously shown to be involved in cell wall-plasma membrane contacts and to play roles in plant-pathogen interactions, but so far, its role in development was unknown. LecRK-I.9 is transcribed at a high level in root tissues including the pericycle. Comparative transcript profiling of a loss-of-function mutant vs wild type identifies LecRK-I.9 as a regulator of cell wall metabolism. Consistently, lecrk-I.9 mutants display an increased pectin methylesterification level correlated with decreased pectin methylesterase and increased polygalacturonase activities. Also, LecRK-I.9 negatively impacts lateral root development through the direct or indirect regulation of genes encoding (i) cell wall remodelling proteins during early events of lateral root initiation, and (ii) cell wall signalling peptides (CLE2, CLE4) repressing lateral root emergence and growth. Besides, low nitrate reduces LecRK-I.9 expression in roots, particularly in the lateral root emergence zone: even in these conditions, the control of CLE2 and CLE4 expression is maintained. Altogether, the results show that LecRK-I.9 is a key player in negatively regulating both pre-branch site formation and lateral root emergence.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1460-2431
- Database :
- MEDLINE
- Journal :
- Journal of experimental botany
- Publication Type :
- Academic Journal
- Accession number :
- 39724305
- Full Text :
- https://doi.org/10.1093/jxb/erae520