Back to Search Start Over

Phosphorylation-mediated conformational change regulates human SLFN11.

Authors :
Kugler M
Metzner FJ
Witte G
Hopfner KP
Lammens K
Source :
Nature communications [Nat Commun] 2024 Dec 03; Vol. 15 (1), pp. 10500. Date of Electronic Publication: 2024 Dec 03.
Publication Year :
2024

Abstract

Human Schlafen 11 (SLFN11) is sensitizing cells to DNA damaging agents by irreversibly blocking stalled replication forks, making it a potential predictive biomarker in chemotherapy. Furthermore, SLFN11 acts as a pattern recognition receptor for single-stranded DNA (ssDNA) and functions as an antiviral restriction factor, targeting translation in a codon-usage-dependent manner through its endoribonuclease activity. However, the regulation of the various SLFN11 functions and enzymatic activities remains enigmatic. Here, we present cryo-electron microscopy (cryo-EM) structures of SLFN11 bound to tRNA-Leu and tRNA-Met that give insights into tRNA binding and cleavage, as well as its regulation by phosphorylation at S219 and T230. SLFN11 phosphomimetic mutant S753D adopts a monomeric conformation, shows ATP binding, but loses its ability to bind ssDNA and shows reduced ribonuclease activity. Thus, the phosphorylation site S753 serves as a conformational switch, regulating SLFN11 dimerization, as well as ATP and ssDNA binding, while S219 and T230 regulate tRNA recognition and nuclease activity.<br />Competing Interests: Competing interests: The authors declare no competing interests.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
39627193
Full Text :
https://doi.org/10.1038/s41467-024-54833-7