Back to Search Start Over

Altered gut microbiome profiles in epileptic children are associated with spectrum of anti-seizure medication responsiveness.

Authors :
Yuwattana R
Suparan K
Kerdphoo S
Arunsak B
Sanguansermsri C
Katanyuwong K
Chattipakorn N
Wiwattanadittakul N
Chattipakorn SC
Source :
Brain research [Brain Res] 2024 Dec 01; Vol. 1849, pp. 149367. Date of Electronic Publication: 2024 Dec 01.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Gut microbiota plays a role in epilepsy. However, current knowledge of how gut dysbiosis is associated with a response to anti-seizure medications (ASMs) in epileptic children is still limited. We aimed to characterize the gut microbiota profiles in epileptic children based on response to ASMs. Eighty-six children aged 3-18 years old with a regular oral diet were enrolled onto the study and divided into three groups in accordance with ILAE definitions: 26 healthy controls, 31 drug-sensitive epilepsy (DSE) patients, and 29 drug-resistant epilepsy (DRE) patients. Based on ASM responsiveness, defined as a reduction in seizure frequency of at least 75 % over one year, DRE individuals were subclassified into 13 drug responsive (DRE-DR) and 16 drug non-responsive (DRE-DNR) patients. Feces were collected at the time of enrollment for gut microbiota analysis using 16S rRNA sequencing. Epileptic patients exhibited distinctive gut dysbiotic profiles. Differential abundance investigation revealed that CAG-56 was significantly increased in epileptic patients compared to controls. Saccharimonadales and Peptoclostridium significantly increased in the DSE group, compared to the DRE group. Vibrionaceae, especially Grimontia, Rhodobacteraceae, and Enterobacter were significantly abundant in the DRE-DNR group, followed by abundance in the DRE-DR and DSE groups. Outcomes from PICRUSt2 analysis predicted that epileptic patients, especially those in the DRE group, had increased metabolic pathways responsible for vanillin and taurine degradation, compared to controls. These findings suggest that gut dysbiosis could play roles in epileptogenesis and ASM resistance. Notably, the identified gut microbes could serve as predictive biomarkers for the DRE condition.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-6240
Volume :
1849
Database :
MEDLINE
Journal :
Brain research
Publication Type :
Academic Journal
Accession number :
39626831
Full Text :
https://doi.org/10.1016/j.brainres.2024.149367