Back to Search Start Over

(-)-Epigallocatechin-3-gallate (EGCG) ameliorates ovalbumin-induced asthma by inhibiting inflammation via the TNF-α/TNF-R1/NLRP3 signaling pathway.

Authors :
Zhang B
Zeng M
Tie Q
Wang R
Wang M
Wu Y
Zheng X
Feng W
Source :
International immunopharmacology [Int Immunopharmacol] 2025 Jan 10; Vol. 144, pp. 113708. Date of Electronic Publication: 2024 Dec 03.
Publication Year :
2025

Abstract

(-)-Epigallocatechin-3-gallate (EGCG) is a polyphenol in green tea with potential lung-protective effects. However, the effects of EGCG on airway inflammation in asthma remain unclear. The aim of this study was to investigate the effect and mechanism of EGCG on asthmatic airway inflammation. In this study, the therapeutic effects of EGCG on ovalbumin (OVA)-induced asthmatic mice were tested first. Second, the effects of EGCG on airway inflammation, airway hyperresponsiveness (AHR), airway mucus hypersecretion, cell apoptosis and differential genes were investigated. Finally, the relationships between the effects of EGCG on airway inflammation and the TNF-α/TNF-R1/NLRP3 signaling pathway in asthmatic mice were explored. The results showed that EGCG could attenuate AHR, alleviate the symptoms of alveolar wall thickening and inflammatory cell infiltration, decrease the levels of inflammatory cytokines and airway mucus markers, reduce apoptosis and reactive oxygen species (ROS) and increase the mitochondrial membrane potential (MMP) in primary lung cells in asthmatic mice. Additionally, EGCG significantly inhibited the activation of the TNF-α/TNF-R1/NLRP3 signaling pathway in the lung tissues of asthmatic mice. The lowest binding free energies of EGCG with TNF-α, TNF-R1 and NLRP3 were -11.6, -11.6 and -8.2 kcal/mol, respectively. Moreover, the equilibrium dissociation constant (KD) of EGCG and TNF-R1was 26.05 μmol/L. EGCG-mediated inhibition of TNF-α/TNF-R1/NLRP3 signaling pathway activation was blocked in LPS-induced BEAS-2B and RAW264.7 cells overexpressing TNF-α. Consequently, EGCG effectively attenuated AHR and inhibited airway inflammation and airway mucus hypersecretion in asthmatic mice, and these effects may be closely related to the TNF-α/TNF-R1/NLRP3 signaling pathway.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1878-1705
Volume :
144
Database :
MEDLINE
Journal :
International immunopharmacology
Publication Type :
Academic Journal
Accession number :
39626539
Full Text :
https://doi.org/10.1016/j.intimp.2024.113708