Back to Search Start Over

SFPQ-TFE3 gene fusion reciprocally regulates mTORC1 activity and induces lineage plasticity in a novel mouse model of renal tumorigenesis.

Authors :
Asrani K
Amaral A
Woo J
Abadchi SN
Vidotto T
Feng K
Liu HB
Kasbe M
Baba M
Oike Y
Outeda P
Watnick T
Rosenberg AZ
Schmidt LS
Linehan WM
Argani P
Lotan TL
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Nov 22. Date of Electronic Publication: 2024 Nov 22.
Publication Year :
2024

Abstract

The MiT/TFE family gene fusion proteins, such as SFPQ-TFE3 , drive both epithelial (eg, translocation renal cell carcinoma, tRCC) and mesenchymal (eg, perivascular epithelioid cell tumor, PEComa) neoplasms with aggressive behavior. However, no prior mouse models for SFPQ-TFE3 -related tumors exist and the mechanisms of lineage plasticity induced by this fusion remain unclear. Here, we demonstrate that constitutive murine renal expression of human SFPQ-TFE3 using Ksp Cadherin-Cre as a driver disrupts kidney development leading to early neonatal renal failure and death. In contrast, post-natal induction of SFPQ-TFE3 in renal tubular epithelial cells using Pax8 ERT-Cre induces infiltrative epithelioid tumors, which morphologically and transcriptionally resemble human PEComas. As seen in MiT/TFE fusion-driven human tumors, SFPQ-TFE3 expression is accompanied by the strong induction of mTORC1 signaling, which is partially amino acid-sensitive and dependent on increased SFPQ-TFE3 -mediated RRAGC/D transcription. Remarkably, SFPQ-TFE3 expression is sufficient to induce lineage plasticity in renal tubular epithelial cells, with rapid down-regulation of the critical PAX2/PAX8 nephric lineage factors and tubular epithelial markers, and concomitant up-regulation of PEComa differentiation markers in transgenic mice, human cell line models and human tRCC. Pharmacologic or genetic inhibition of mTOR signaling downregulates expression of the SFPQ-TFE3 fusion protein and rescues nephric lineage marker expression and transcriptional activity in vitro. These data provide evidence of a potential epithelial cell-of-origin for TFE3 -driven PEComas and highlight a reciprocal role for SFPQ-TFE3 and mTOR in driving lineage plasticity in the kidney, expanding our understanding of the pathogenesis of MiT/TFE-driven tumors.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Publication Type :
Academic Journal
Accession number :
39605439
Full Text :
https://doi.org/10.1101/2024.11.21.624702