Back to Search Start Over

Improved Malaria Therapy with Cationic Nanocapsules Demonstrated in Plasmodium berghei -Infected Rodents Using Whole Blood Surrogate Population PK/PD Modeling.

Authors :
Maciel TR
Funguetto-Ribeiro AC
Olivo LB
Teixeira FEG
Pacheco CO
Araujo BV
Haas SE
Source :
Pharmaceutics [Pharmaceutics] 2024 Oct 25; Vol. 16 (11). Date of Electronic Publication: 2024 Oct 25.
Publication Year :
2024

Abstract

Objectives : Investigating how nanoparticle systems interact in whole blood (WB) is critical to evaluating the effectiveness of malaria therapy. Methods: We decided to establish a pharmacokinetic/pharmacodynamic (PK/PD) model of the quinine population in WB using Plasmodium berghei -infected mice, with a subsequent model comparison for nanocapsules coated with polysorbate (NCP80) or prepared with Eudragit <superscript>®</superscript> RS (NCEUD). The WB quinine population pharmacokinetic model in rats was developed using plasma and partition coefficients for rat erythrocytes. Mouse WB quinine population PK/PD modeling was developed using allometrically scaled literature-free mouse quinine pharmacokinetic data and covariate values to obtain a WB population pharmacokinetic model for quinine and nanocapsules in mice. This allowed for PK/PD modeling of the quinine population with the WB concentration and parasitemia data in mice. All models were built in NONMEN. Results : The WB quinine concentration profiles in rats were characterized using a two-compartment model. Nanoencapsulation reduced clearance and central compartment volume and increased peripherical compartimental volume. A maximum effect model described the PK/PD of the quinine WB population in mice, demonstrating that NCEUD enhances the antimalarial effect. Conclusions : Quinine WB is a good surrogate for describing the response to exposure in malaria. NCEUD outperformed NCP80 and free quinine, suggesting that cationic surfaces improve the potential for treating malaria.

Details

Language :
English
ISSN :
1999-4923
Volume :
16
Issue :
11
Database :
MEDLINE
Journal :
Pharmaceutics
Publication Type :
Academic Journal
Accession number :
39598493
Full Text :
https://doi.org/10.3390/pharmaceutics16111369