Back to Search Start Over

Flux Synthesis of A-site Disordered Perovskite La 0.5 M 0.5 TiO 3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes.

Authors :
Wang T
Ock J
Chen XC
Wang F
Li M
Chambers MS
Veith GM
Shepard LB
Sinnott SB
Borisevich A
Chi M
Bhattacharya A
Clément RJ
Sokolov AP
Dai S
Source :
Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2025 Jan; Vol. 12 (3), pp. e2408805. Date of Electronic Publication: 2024 Nov 25.
Publication Year :
2025

Abstract

Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li-ion batteries. Among inorganic fillers, perovskite-type lithium lanthanum titanate (LLTO) stands out for its high bulk Li <superscript>+</superscript> conductivity on the order of 10 <superscript>-3</superscript> S cm <superscript>-1</superscript> at room temperature. According to a literature survey, the optimal LLTO filler should possess the following characteristics: i) a single-crystal structure to minimize grain boundaries; ii) a small particle size to increase the filler/polymer interface area; iii) a 1D morphology for efficient interface channels; and iv) cubic symmetry to facilitate rapid bulk Li <superscript>+</superscript> diffusion within the filler. However, the synthesis of single crystal, 1D LLTO nanomaterials with cubic symmetry is challenging. Herein, a flux strategy is developed to synthesize La <subscript>0.5</subscript> M <subscript>0.5</subscript> TiO <subscript>3</subscript> (LMTO, M═Li, Na, and K) single-crystal nanorods with an A-site-disordered, cubic perovskite phase. The flux media promotes the oriented growth of nanorods, prevents nanorods from sintering, and provides multiple alkali metal ion doping at M sites to stabilize the cubic phase. SCEs compositing the Li <superscript>+</superscript> -conducting LMTO nanorods as fillers and poly[vinylene carbonate-co-lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] matrix exhibit more than twice the conductivity of the neat polymer electrolyte (30.6 vs 14.0 µS cm <superscript>-1</superscript> at 303 K).<br /> (© 2024 Oak Ridge National Laboratory, managed by UT‐Battelle LLC. Advanced Science published by Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
2198-3844
Volume :
12
Issue :
3
Database :
MEDLINE
Journal :
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Publication Type :
Academic Journal
Accession number :
39586301
Full Text :
https://doi.org/10.1002/advs.202408805