Back to Search Start Over

Additively manufactured plastic plasma spectrometer.

Authors :
Larrick Q
Pollock C
Hampton D
Avanov L
Gershman D
Thorsen D
Shipman G
Atencio J
Melkomukov A
Source :
The Review of scientific instruments [Rev Sci Instrum] 2024 Nov 01; Vol. 95 (11).
Publication Year :
2024

Abstract

We report results in the development and testing of a low resource tophat electrostatic analyzer (ESA) for space plasma measurements. This device has been additively manufactured (3D-printed) using fused deposition modeling. The classic tophat design is composed of four plastic pieces, without any surface coatings. The three conducting electrodes are printed from carbon nanotube infused polyether ether ketone (CNT-PEEK). The fourth piece, an insulating electrode support, uses pure PEEK. This ESA is designed to detect electrons in space from 10 eV up to 30 keV. We demonstrate that the printed CNT-PEEK is sufficiently electrically conductive to support the fast high voltage slewing often required for high time resolution measurements. The plastic ESA has been successfully vibrated beyond standard pre-flight levels, tested under keV electron beam illumination over a wide range of temperatures, and tested under UV illumination, simulating the solar Ly-α flux. In comparison with an identical machined aluminum ESA, our CNT-PEEK ESA provides nominal energy/angle bandpasses, closely matching simulation. These bandpasses imply minimal impact from surface charging at beam energies of 2-3 keV, although more investigation is needed. We also find that the CNT-PEEK ESA provides far superior out-of-band electron rejection and UV photon rejection compared to the machined aluminum ESA. We do not detect any problems with trapped gases or outgassing. This development offers the potential for significant mass savings, implementation of otherwise unattainable geometric configurations, and dramatic simplification in manufacturing and assembly processes required for the development of space plasma instruments.<br /> (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)

Details

Language :
English
ISSN :
1089-7623
Volume :
95
Issue :
11
Database :
MEDLINE
Journal :
The Review of scientific instruments
Publication Type :
Academic Journal
Accession number :
39565163
Full Text :
https://doi.org/10.1063/5.0219571