Back to Search
Start Over
An alternative route for β-hydroxybutyrate metabolism supports fatty acid synthesis in cancer cells.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2024 Nov 03. Date of Electronic Publication: 2024 Nov 03. - Publication Year :
- 2024
-
Abstract
- Cancer cells are exposed to diverse metabolites in the tumor microenvironment that are used to support the synthesis of nucleotides, amino acids, and lipids needed for rapid cell proliferation <superscript>1-3</superscript> . Recent work has shown that ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle in some tumors <superscript>4-7</superscript> . Here, we discover a non-canonical route for β-OHB metabolism, in which β-OHB can bypass the TCA cycle to generate cytosolic acetyl-CoA for de novo fatty acid synthesis in cancer cells. We show that β-OHB-derived acetoacetate in the mitochondria can be shunted into the cytosol, where acetoacetyl-CoA synthetase (AACS) and thiolase convert it into acetyl-CoA for fatty acid synthesis. This alternative metabolic routing of β-OHB allows it to avoid oxidation in the mitochondria and net contribute to anabolic biosynthetic processes. In cancer cells, β-OHB is used for fatty acid synthesis to support cell proliferation under lipid-limited conditions in vitro and contributes to tumor growth under lipid-limited conditions induced by a calorie-restricted diet in vivo . Together, these data demonstrate that β-OHB is preferentially used for fatty acid synthesis in cancer cells to support tumor growth.<br />Competing Interests: Competing interests: R.G.J. is a scientific advisor to Servier Pharmaceuticals and is a member of the Scientific Advisory Board of Immunomet Therapeutics. All other authors declare no competing interests.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 39554134
- Full Text :
- https://doi.org/10.1101/2024.10.31.621317