Back to Search Start Over

Cisplatin-functionalized dual-functional bone substitute granules for bone defect treatment after bone tumor resection.

Authors :
Wang Z
Kregel M
Meijers JL
Franch J
Cuijpers VMJI
Ahlers D
Karst U
Slootweg P
van der Geest IC
Leeuwenburgh SC
van den Beucken JJ
Source :
Acta biomaterialia [Acta Biomater] 2025 Jan 01; Vol. 191, pp. 158-176. Date of Electronic Publication: 2024 Nov 17.
Publication Year :
2025

Abstract

Invasive bone tumors pose a significant healthcare challenge, often requiring systemic chemotherapy and limb salvage surgery. However, these strategies are hampered by severe side effects, complex post-resection bone defects, and high local recurrence rates. To address this, we developed dual-functional bone substitute biomaterials by functionalizing commercially available bone substitute granules (Bio-Oss® and MBCP®+) with the established anticancer agent cisplatin. Physicochemical characterization revealed that Bio-Oss® granules possess a higher surface area and lower crystallinity compared to MBCP®+ granules, which enhances their capacity for cisplatin adsorption and release. In co-cultures with metastatic breast and prostate cancer cells (MDA-MB-231 and PC3) and bone marrow stromal cells (hBMSCs), cisplatin-functionalized granules and their releasates exhibited dose-dependent cytotoxic effects on cancer cells while having less impact on hBMSCs. Furthermore, investigations on the mechanism of action indicated that cisplatin induced significant cell cycle arrest and apoptosis in MDA-MB-231 and PC3 cells, contrasting with minimal effects on hBMSCs. In a rat femoral condyle defect model, cisplatin-functionalized granules did not evoke adverse effects on bone tissue ingrowth or new bone formation. Importantly, local application of cisplatin-functionalized granules resulted in negligible cisplatin accumulation without signs of apoptotic damage in kidneys and livers. Taken together, we here provide hard evidence that cisplatin-functionalized granules maintain a favorable balance between biosafety, anticancer efficacy, and bone regenerative capacity. Consequently, loading granular bone substitutes with cisplatin holds promise for local treatment of bone defects following bone tumor resections, presenting a safe and potentially more effective alternative to systemic cisplatin administration. STATEMENT OF SIGNIFICANCE: Current treatments in combating malignant bone tumors are hampered by severe side effects, high local tumor recurrence, and complex bone defects after surgery. This study explores a facile manufacturing method to render two types of commercially available bone substitute granules (Bio-Oss® and MBCP®+) suitable for local delivery of cisplatin. The use of cisplatin-functionalized granules has shown promising results both in killing cancer cells in a dose-dependent manner and in aiding bone regeneration. Importantly, this local treatment strategy avoids the systemic toxicity associated with traditional chemotherapy to excretory organs. This dual-functional strategy represents a significant advancement in bone cancer treatment, offering a safe and more efficient alternative that could improve outcomes for patients following bone tumor resection.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)

Details

Language :
English
ISSN :
1878-7568
Volume :
191
Database :
MEDLINE
Journal :
Acta biomaterialia
Publication Type :
Academic Journal
Accession number :
39551330
Full Text :
https://doi.org/10.1016/j.actbio.2024.11.020