Back to Search Start Over

Performance of co-composting Pholiota nameko spent mushroom substrate and pig manure at different proportions: Chemical properties and humification process.

Authors :
Wang S
Du X
Yin R
Sun H
Song B
Han Q
Wang J
Huang Y
Source :
Journal of environmental management [J Environ Manage] 2024 Dec; Vol. 372, pp. 123325. Date of Electronic Publication: 2024 Nov 16.
Publication Year :
2024

Abstract

Co-composting is the controlled aerobic degradation of organics, using more than one feedstock. By combining the spent mushroom substrate of Pholiota nameko (SMS) and pig manure (PM), the benefits of each could be used to optimize the composting process and the final product. This study introduced a comprehensive evaluation strategy aimed at identifying the optimal co-composting ratio for these two substrates. A 120-day composting trial was conducted, blending SMS and PM in various ratios to evaluate the benefits of co-composting SMS-PM. The results indicated that dissolved organic matter (DOM) in SMS-derived compost primarily originated from plants, whereas PM-derived compost predominantly consisted of microbial metabolic products, and co-composting combined both sources. An increase in aromaticity and humification degree of DOM occurred during the composting process itself rather than being derived from autochthonous origin. Carbohydrates like phenols and alcohols broke down during composting, and microbes utilized polysaccharides as an energy source for humus formation. As co-composting progressed, the treatments with varying mass ratios of SMS to PM, including 8:2, 7:3, 6:4, 5:5, 4:6, and 3:7 were observed to result in a decline in aliphatic hydroxylated chains alongside an enhancement in aromaticity within the compost. Additionally, there was a conversion from organic carbon (C) to carboxyl C within humic acid (HA) due to oxidation and dehydrogenation processes that facilitated the formation of stable nitrogen-containing compounds characterized by condensed aromatic structures. Following thorough evaluation, it was determined that optimal composting efficacy occurred at a mass ratio of SMS to PM equal to 6:4. Post-compost analysis revealed increases in nutrient content; specifically, germination index (GI) value reached 132.7%, while organic matter content attained 45.3%. Conversely, electrical conductivity (EC), C contents of water-soluble substances and humin (Cwss and C <subscript>Hu</subscript> ) decreased by approximately 11.8%, 73.4%, and 29.8% respectively; meanwhile, C contents of humic-extracted acid and HA (C <subscript>HE</subscript> and C <subscript>HA</subscript> ), along with degree of polymerization (DP), increased by 17.3%, 20.3% and 9.9% respectively. The proposed co-compost formula not only facilitated simultaneous recycling of both SMS and PM waste but also transformed them into high-quality organic fertilizers suitable for soil enrichment-effectively addressing challenges faced by both edible fungi cultivation and livestock industries while augmenting organic fertilizer sources for Black land protection.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1095-8630
Volume :
372
Database :
MEDLINE
Journal :
Journal of environmental management
Publication Type :
Academic Journal
Accession number :
39549458
Full Text :
https://doi.org/10.1016/j.jenvman.2024.123325