Back to Search Start Over

Impact of electronic correlation on strong laser-induced bound-state transitions.

Authors :
Xie X
Yu WW
Song Z
Wang J
Zhao X
Source :
Optics express [Opt Express] 2024 Jul 15; Vol. 32 (15), pp. 26846-26857.
Publication Year :
2024

Abstract

Electron correlation (EC) plays a crucial role in all multi-electron systems and dynamic processes. In this work, we focus on strong laser-induced bound-bound transitions (BBT), which are fundamental to optical absorption measurements. We use the helium atom, the simplest two-electron system, as our test case, utilizing the ab initio code package HeTDSE. We examined the bound state energy levels, transition dipole moments (TDMs), and the dynamics of strong laser-induced BBT, both with and without considering EC. Our results indicate that EC significantly impacts the energy levels of the bound states and the TDMs. These effects collectively influence the transition dynamics of the excited states. Although EC does not alter the quantum transition pathways between resonance states, it generally increases the probability of resonance transitions in most cases. Our findings provide a quantitative description of EC in laser-induced BBT.

Details

Language :
English
ISSN :
1094-4087
Volume :
32
Issue :
15
Database :
MEDLINE
Journal :
Optics express
Publication Type :
Academic Journal
Accession number :
39538538
Full Text :
https://doi.org/10.1364/OE.530317