Back to Search Start Over

ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism.

Authors :
Zheng W
Wang Y
Cui J
Guo G
Li Y
Hou J
Tu Q
Yin Y
Stewart F
Zhang Y
Bian X
Wang X
Source :
Nature communications [Nat Commun] 2024 Nov 12; Vol. 15 (1), pp. 9790. Date of Electronic Publication: 2024 Nov 12.
Publication Year :
2024

Abstract

The complexities encountered in microbial metabolic engineering continue to elude prediction and design. Unravelling these complexities requires strategies that go beyond conventional genetics. Using multiplex mutagenesis with double stranded (ds) DNA, we extend the multiplex repertoire previously pioneered using single strand (ss) oligonucleotides. We present ReaL-MGE (Recombineering and Linear CRISPR/Cas9 assisted Multiplex Genome Engineering). ReaL-MGE enables precise manipulation of numerous large DNA sequences as demonstrated by the simultaneous insertion of multiple kilobase-scale sequences into E. coli, Schlegelella brevitalea and Pseudomonas putida genomes without any off-target errors. ReaL-MGE applications to enhance intracellular malonyl-CoA levels in these three genomes achieved 26-, 20-, and 13.5-fold elevations respectively, thereby promoting target polyketide yields by more than an order of magnitude. In a further round of ReaL-MGE, we adapt S. brevitalea to malonyl-CoA elevation utilizing a restricted carbon source (lignocellulose from straw) to realize production of the anti-cancer secondary metabolite, epothilone from lignocellulose. Multiplex mutagenesis with dsDNA enables the incorporation of lengthy segments that can fully encode additional functions. Additionally, the utilization of PCR to generate the dsDNAs brings flexible design advantages. ReaL-MGE presents strategic options in microbial metabolic engineering.<br />Competing Interests: Competing interests The authors declare no competing interests.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
39532871
Full Text :
https://doi.org/10.1038/s41467-024-54191-4