Back to Search Start Over

Copper oxide nanoparticles induce non-alcoholic fatty liver disease by disrupting bile acid homeostasis and perturbing the intestinal microbial homeostasis.

Authors :
Jiang M
Tao X
Pang Y
Qin Z
Song E
Song Y
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Dec 05; Vol. 480, pp. 136416. Date of Electronic Publication: 2024 Nov 05.
Publication Year :
2024

Abstract

The wide application of copper oxide nanoparticles (CuO NPs) in various fields such as medicine, food, agriculture, and animal husbandry can result in direct or indirect oral exposure of CuO NPs to the human body. Therefore, the research on the biosafety of CuO NPs is crucially important. However, previous research mainly concentrated on CuO NPs-induced oxidative stress, rather than the dysregulation of metabolic homeostasis. Our current finding indicates that CuO NPs can enter the systemic circulation and accumulate in the liver by being adopted by the colon and disrupting the intestinal barrier. Subsequently, CuO NPs can impair bile acid (BA) homeostasis through increased reabsorption of bile acids (BAs), ultimately leading to non-alcoholic fatty liver disease (NAFLD). Additionally, the direct stimulation from CuO NPs, damage to the gut barrier, and disruption of BA homeostasis can also disrupt microbial homeostasis in the intestines, including alterations in the composition and biological functions of gut microbiota, thereby triggering NAFLD. These findings deepen our understanding of the biosafety of CuO NPs and provide evidence for their role in disrupting physiological homeostasis.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
480
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
39531819
Full Text :
https://doi.org/10.1016/j.jhazmat.2024.136416