Back to Search
Start Over
Transcriptome-wide methylated RNA immunoprecipitation sequencing profiling reveals m6A modification involved in response to heat stress in Apostichopus japonicus.
- Source :
-
BMC genomics [BMC Genomics] 2024 Nov 11; Vol. 25 (1), pp. 1071. Date of Electronic Publication: 2024 Nov 11. - Publication Year :
- 2024
-
Abstract
- Background: Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism.<br />Results: In this study, m6A-modified whole transcriptome profiles of the respiratory tree tissues of A. japonicus in the control (T18) and high-temperature stress (T32) groups were obtained using MeRIP-seq technology. The results showed that 7,211 common m6A peaks, and 9,459 genes containing common m6A were identified in three replicates T18 and T32 groups. The m6A peaks were found to be highly enriched in the 3' untranslated region, and the common sequence of the m6A peak was also enriched, which was shown as RRACH (R = G or A; H = A, C, or U). A total of 1,200 peaks were identified as significantly differentially enriched in the T32 group compared with the T18 group. Among them, 245 peaks were upregulated and 955 were downregulated, which indicated that high temperature stress significantly altered the methylation pattern of m6A, and there were more demethylation sites in the T32 group. Conjoint analysis of the m6A methylation modification and the transcript expression level (the MeRIP-seq and RNA-seq data) showed co-differentiated 395 genes were identified, which were subsequently divided into four groups with a predominant pattern that more genes with decreased m6A modification and up-regulated expression, including HSP70IV, EIF2AK1, etc. GO enrichment and KEGG analyses of differential m6A peak related genes and co-differentiated genes showed the genes were significantly associated with transcription process and pathways such as protein processing in the endoplasmic reticulum, Wnt signaling pathway, and mTOR signaling pathway, etc. CONCLUSION: The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification was involved in the regulation of heat stress-responsive genes and important functional pathways in A. japonicus in response to high-temperature stress. The study will contribute to elucidate the regulatory mechanism of m6A modification in the response of A. japonicus to environmental stress, as well as the conservation and utilization of sea cucumber resources in the context of environmental changes.<br />Competing Interests: Declarations Ethics approval and consent to participate The animal study was approved by the Institutional Animal Care and Use Committee of the Ludong University (protocol number LDU-IRB20210308NXY). The study was conducted in accordance with the local legislation and institutional requirements. Consent for publication Not applicable. Competing interests The authors declare no competing interests.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 1471-2164
- Volume :
- 25
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC genomics
- Publication Type :
- Academic Journal
- Accession number :
- 39528936
- Full Text :
- https://doi.org/10.1186/s12864-024-10972-1