Back to Search Start Over

Fibroblast-derived miR-425-5p alleviates cardiac remodelling in heart failure via inhibiting the TGF-β1/Smad signalling.

Authors :
Zhou H
Liu P
Guo X
Fang W
Wu C
Zhang M
Ji Z
Source :
Journal of cellular and molecular medicine [J Cell Mol Med] 2024 Nov; Vol. 28 (21), pp. e70199.
Publication Year :
2024

Abstract

The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms. C57BL/6 mice were injected with a recombinant adeno-associated virus specifically designed to overexpress miR-425-5p in CFs, followed by transverse aortic constriction (TAC) surgery. Neonatal mouse CFs (NMCFs) were transfected with miR-425-5p mimics and subsequently stimulated with angiotensin II (Ang II). We found that miR-425-5p levels were significantly downregulated in HF mice and Ang II-treated NMCFs. Notably, fibroblast-specific overexpression of miR-425-5p markedly inhibited the proliferation and differentiation of CFs, thereby alleviating myocardial fibrosis, cardiac hypertrophy and systolic dysfunction. Mechanistically, the cardioprotective actions of miR-425-5p may be achieved by targeting the TGF-β1/Smad signalling. Interestingly, miR-425-5p mimics-treated CFs could also indirectly affect cardiomyocyte hypertrophy in this course. Together, our findings suggest that fibroblast-derived miR-425-5p mitigates TAC-induced HF, highlighting miR-425-5p as a potential diagnostic and therapeutic target for treating HF patients.<br /> (© 2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1582-4934
Volume :
28
Issue :
21
Database :
MEDLINE
Journal :
Journal of cellular and molecular medicine
Publication Type :
Academic Journal
Accession number :
39527465
Full Text :
https://doi.org/10.1111/jcmm.70199