Back to Search
Start Over
Genetic potential for aerobic respiration and denitrification in globally distributed respiratory endosymbionts.
- Source :
-
Nature communications [Nat Commun] 2024 Nov 08; Vol. 15 (1), pp. 9682. Date of Electronic Publication: 2024 Nov 08. - Publication Year :
- 2024
-
Abstract
- The endosymbiont Candidatus Azoamicus ciliaticola was proposed to generate ATP for its eukaryotic host, an anaerobic ciliate of the Plagiopylea class, fulfilling a function analogous to mitochondria in other eukaryotic cells. The discovery of this respiratory endosymbiosis has major implications for both evolutionary history and ecology of microbial eukaryotes. However, with only a single species described, knowledge of its environmental distribution and diversity is limited. Here we report four complete, circular metagenome assembled genomes (cMAGs) representing respiratory endosymbionts inhabiting groundwater in California, Ohio, and Germany. These cMAGs form two lineages comprising a monophyletic clade within the uncharacterized gammaproteobacterial order UBA6186, enabling evolutionary analysis of their key protein complexes. Strikingly, all four cMAGs encode a cytochrome cbb <subscript>3</subscript> oxidase, which indicates that these endosymbionts have the capacity for aerobic respiration. Accordingly, we detect these respiratory endosymbionts in diverse habitats worldwide, thus further expanding the ecological scope of this respiratory symbiosis.<br /> (© 2024. The Author(s).)
- Subjects :
- Metagenome
Aerobiosis
Ciliophora genetics
Ciliophora metabolism
Groundwater microbiology
Gammaproteobacteria genetics
Gammaproteobacteria metabolism
Germany
Electron Transport Complex IV genetics
Electron Transport Complex IV metabolism
California
Genome, Bacterial
Symbiosis
Phylogeny
Denitrification
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 15
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 39516195
- Full Text :
- https://doi.org/10.1038/s41467-024-54047-x