Back to Search Start Over

Stretchable, self-adhesive, and conductive hemicellulose-based hydrogels as wearable strain sensors.

Authors :
Zhao L
Luo B
Gao S
Liu Y
Lai C
Zhang D
Guan W
Wang C
Chu F
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Nov 06; Vol. 282 (Pt 6), pp. 137313. Date of Electronic Publication: 2024 Nov 06.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Conductive hydrogels have recently gained impressive attention in flexible sensing. However, their low sensing limit and poor interface matching have raised great concern during the practical application. Therefore, incorporating excellent stretchability and adhesiveness into conductive hydrogel is highly desirable but still be a huge challenge. In this study, we synthesized composite hydrogels with desired properties by utilizing the synergistic role of hemicellulose (HC) and conductive two-dimensional material MXene. As a result, the synthesized hydrogels showed good self-adhesion (3.12 KPa on the skin), great stretchability (>1700 %), and satisfactory electrical conductivity. These multifunctional hydrogels operated as adaptable sensors, adeptly capturing the nuanced signals emanating from an array of human motions. They exhibited an expansive strain tolerance, swift reactivity, and an enhanced acuity in detecting even the slightest deformations (GF = 2.1). Our research provides new insights for creating stretchable, self-adhesive, and functional hydrogels for sensing applications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
282
Issue :
Pt 6
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
39515690
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.137313