Back to Search Start Over

Genome-wide association and functional genomic analyses for body conformation traits in North American Holstein cattle.

Authors :
Sousa Junior LPB
Pinto LFB
Cruz VAR
Oliveira Junior GA
Oliveira HR
Chud TS
Pedrosa VB
Miglior F
Schenkel FS
Brito LF
Source :
Frontiers in genetics [Front Genet] 2024 Oct 24; Vol. 15, pp. 1478788. Date of Electronic Publication: 2024 Oct 24 (Print Publication: 2024).
Publication Year :
2024

Abstract

Body conformation traits are directly associated with longevity, fertility, health, and workability in dairy cows and have been under direct genetic selection for many decades in various countries worldwide. The main objectives of this study were to perform genome-wide association studies and functional enrichment analyses for fourteen body conformation traits using imputed high-density single nucleotide polymorphism (SNP) genotypes. The traits analyzed include body condition score (BCS), body depth (BD), bone quality (BQ), chest width (CW), dairy capacity (DC), foot angle (FAN), front legs view (FLV), heel depth (HDe), height at front end (HFE), locomotion (LOC), rear legs rear view (RLRV), rear legs side view (RLSV), stature (ST), and a composite feet and legs score index (FL) of Holstein cows scored in Canada. De-regressed estimated breeding values from a dataset of 39,135 North American Holstein animals were used as pseudo-phenotypes in the genome-wide association analyses. A mixed linear model was used to estimate the SNP effects, which ranged from 239,533 to 242,747 markers depending on the trait analyzed. Genes and quantitative trait loci (QTL) located up to 100 Kb upstream or downstream of the significant SNPs previously cited in the Animal QTLdb were detected, and functional enrichment analyses were performed for the candidate genes identified for each trait. A total of 20, 60, 13, 17, 27, 8, 7, 19, 4, 10, 13, 15, 7, and 13 genome-wide statistically significant SNPs for Bonferroni correction based on independent chromosomal segments were identified for BCS, BD, BQ, CW, DC, FAN, FLV, HDe, HFE, LOC, RLRV, RLSV, ST, and FL, respectively. The significant SNPs were located across the whole genome, except on chromosomes BTA24, BTA27, and BTA29. Four markers (for BCS, BD, HDe, and RLRV) were statistically significant when considering a much stricter threshold for the Bonferroni correction for multiple tests. Moreover, the genomic regions identified overlap with various QTL previously reported for the trait groups of exterior, health, meat and carcass, milk, production, and reproduction. The functional enrichment analyses revealed 27 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously reported as linked to bone development, metabolism, as well as infectious and immunological diseases.<br />Competing Interests: Author TC was employed by the company PEAK. FM was employed by the company Lactanet Canada. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.<br /> (Copyright © 2024 Sousa Junior, Pinto, Cruz, Oliveira Junior, Oliveira, Chud, Pedrosa, Miglior, Schenkel and Brito.)

Details

Language :
English
ISSN :
1664-8021
Volume :
15
Database :
MEDLINE
Journal :
Frontiers in genetics
Publication Type :
Academic Journal
Accession number :
39512801
Full Text :
https://doi.org/10.3389/fgene.2024.1478788