Back to Search
Start Over
Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites.
- Source :
-
BMC biology [BMC Biol] 2024 Nov 07; Vol. 22 (1), pp. 254. Date of Electronic Publication: 2024 Nov 07. - Publication Year :
- 2024
-
Abstract
- The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 1741-7007
- Volume :
- 22
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC biology
- Publication Type :
- Academic Journal
- Accession number :
- 39511645
- Full Text :
- https://doi.org/10.1186/s12915-024-02032-7