Back to Search Start Over

Small RNA OxyS induces resistance to aminoglycosides during oxidative stress by controlling Fe-S cluster biogenesis in Escherichia coli .

Authors :
Baussier C
Oriol C
Durand S
Py B
Mandin P
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2024 Nov 12; Vol. 121 (46), pp. e2317858121. Date of Electronic Publication: 2024 Nov 04.
Publication Year :
2024

Abstract

Fe-S clusters are essential cofactors involved in many reactions across all domains of life. Their biogenesis in Escherichia coli and other enterobacteria involves two machineries: Isc and Suf. Under conditions where cells operate with the Suf system, such as during oxidative stress or iron limitation, the entry of aminoglycosides is reduced, leading to resistance to these antibiotics. The transition between Isc and Suf machineries is controlled by the transcriptional regulator IscR. Here, we found that two small regulatory RNAs (sRNAs), FnrS and OxyS, control iscR expression by base pairing to the 5'-UTR of the iscR mRNA. These sRNAs act in opposite ways and in opposite conditions: FnrS, expressed in anaerobiosis, represses the expression of iscR while OxyS, expressed during oxidative stress, activates it. Using an E. coli strain experiencing protracted oxidative stress, we further demonstrate that iscR expression is rapidly and significantly enhanced in the presence of OxyS. Consequently, we further show that OxyS induces resistance to aminoglycosides during oxidative stress through regulation of Fe-S cluster biogenesis, revealing a major role for this sRNA.<br />Competing Interests: Competing interests statement:The authors declare no competing interest.

Details

Language :
English
ISSN :
1091-6490
Volume :
121
Issue :
46
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
39495911
Full Text :
https://doi.org/10.1073/pnas.2317858121