Back to Search Start Over

Transposable Element Diversity and Activity Patterns in Neotropical Salamanders.

Authors :
Decena-Segarra LP
Rovito SM
Source :
Molecular biology and evolution [Mol Biol Evol] 2024 Nov 01; Vol. 41 (11).
Publication Year :
2024

Abstract

Transposable elements (TEs) compose a substantial proportion of the largest eukaryotic genomes. TE diversity has been hypothesized to be negatively correlated with genome size, yet empirical demonstrations of such a relationship in a phylogenetic context are largely lacking. Furthermore, the most abundant type of TEs in genomes varies across groups, and it is not clear if there are patterns of TE activity consistent with genome size among different taxa with large genome sizes. We use low-coverage sequencing of 16 species of Neotropical salamanders, which vary ∼7-fold in genome size, to estimate TE relative abundance and diversity for each species. We also compare the divergence of copies of each TE superfamily to estimate patterns of TE activity in each species. We find a negative relationship between TE diversity and genome size, which is consistent with the hypothesis that either competition among TEs or reduced selection against ectopic recombination may result in lower diversity in the largest genomes. We also find divergent activity patterns in the largest versus the smallest genomes, suggesting that the history of TE activity may explain differences in genome size. Our results suggest that both TE diversity and relative abundance may be predictable, at least within taxonomic groups.<br />Competing Interests: Conflict of Interest: The authors declare that they have no conflict of interest.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)

Details

Language :
English
ISSN :
1537-1719
Volume :
41
Issue :
11
Database :
MEDLINE
Journal :
Molecular biology and evolution
Publication Type :
Academic Journal
Accession number :
39470441
Full Text :
https://doi.org/10.1093/molbev/msae225